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Abstract— The efficiency of traffic flows in urban areas
largely depends on signal operation. The state-of-the-art traffic
signal control strategies are not able to efficiently deal with
varying or over-saturated conditions. To optimize the perfor-
mance of existing traffic signal infrastructure, we present an
end-to-end autonomous intersection control agent, based on
Deep Reinforcement Learning (DRL). In the recent years, DRL
has emerged as a powerful tool, solving control problems in-
volving sequential decision making and demonstrating unprece-
dented success in complex settings. Our DRL traffic intersection
control agent configures the traffic signal regimes based solely
on live photo-realistic camera footage. We demonstrate that
our agent consistently, significantly outperforms state-of-the-art
fixed (pre-defined) and adaptive (induction loop-based) signal
control methods under a wide range of ambient conditions, by
increasing the traffic throughput and decreasing the intersection
traversal time for individual vehicles.

I. INTRODUCTION

Traffic congestion is a serious problem, associated with
substantial economic and environmental costs. Poorly-
managed traffic signals are known to be among the major
causes of traffic congestion in urban traffic networks [1].
Over the years, as the variability and unpredictability of
traffic have outpaced the capabilities of traffic light systems
on predefined, fixed time plans - the most common means
of intersection control - to operate efficiently, significant
effort has been devoted towards online adaptive traffic signal
control. In contrast to pre-timed fixed signal control which
repeats a preset signal control regime, online adaptive signal
control is capable of responding to the presence of vehicles
at the intersection by adjusting the regime according to
changing traffic patterns in real time. Nevertheless, the state-
of-the-art adaptive control mechanisms are unable to deal
with congestion efficiently enough. These mechanisms are
either based on application-specific heuristics [2] or they
rely on systems which fail to replicate the traffic flow
accurately - as the real-world traffic phenomena include
highly-stochastic driving dynamics, such as sudden accidents
blocking the flow. For effective utilization of existing traffic
signal control systems, it is critically important to carry
out their optimization using automated agents, capable of
learning, self-configuration and self-optimization.

Since the 1990s, Reinforcement Learning (RL) is con-
sidered as a direct approach to adaptive optimal control of
non-linear systems. RL agents accomplish tasks by monitor-
ing the environment through perception, influencing it by

The authors are based at the Computer Science Department, School of
Engineering and Applied Science, Aston University, Birmingham, United
Kingdom, e-mail: [gargd, m.chli, g.vogiatzis]@aston.ac.uk.

Fig. 1: A view of Traffic3D’s Graphical Display

applying actions and learning by observing the outcomes
of the actions [3]. Deep Reinforcement Learning (DRL)
(a mechanism combining reinforcement and deep learning),
in the recent years, has emerged as a powerful solution
for control problems involving sequential decision-making;
demonstrating unprecedented success in complex, dynamic
and high-dimensional settings such as Atari games [4],
among others. To accomplish a certain task, the DRL agent
continuously interacts with its intended environment and it
learns the set of environment features that are significant
in each problem. Establishing the correlation between the
actions taken by the agent and their subsequent effect on
the environment is the most fundamental aspect of this
interaction.

In a previous proof-of-concept paper [5], we demonstrated
the efficacy of a DRL agent in optimizing traffic through
a road intersection. In the current work, our DRL agent
optimizes the traffic signal regimes under varying ambient
conditions (such as different traffic densities, different ve-
hicle types, different weather and lighting conditions) per-
ceived solely using high-quality photo-realistic visual traffic
data. To perceive the pertaining situation of the intersection
traffic environment holistically, we use a deep neural network
(DNN). Breakthrough developments in the field of deep
learning have made it possible to learn intricate feature
representations directly from high-dimensional raw data such
as images, videos and audio [6]. DRL applied to visual
traffic data from an intersection eliminates the need for pre-
determined hand-crafted features describing the environment



state. In addition, it enables optimisation of decision making
based on visual features (e.g. vehicle type and approach
speeds) that would otherwise be impossible or impractical
using other methods of traffic data collection (such as
induction loops). The nature of the visual input data used
(raw pixels) and possible extensions (combining different
camera views to optimize traffic through multiple junctions)
make it a very powerful resource, which we fully exploit in
the current work through an appropriately trained and tuned
DRL system. Furthermore, in the current work, we utilise
the Macroscopic Fundamental Diagram (MFD) [7] alongside
measuring junction travel time, to assess our DRL agent’s
performance based on established transportation metrics -
traffic density (veh/km), traffic flow (veh/hr) and speed
(km/hr). Our results demonstrate that our agent successfully
optimizes the navigation of vehicles through intersections in
varying traffic conditions such as traffic densities, weather
and lighting.

II. RELATED WORK

Here, we briefly introduce the conventional signal control
methods, followed by incorporation of reinforcement learn-
ing (RL) methods for signal control. Lastly, we summarize
state-of-the-art traffic simulation platforms.

A. Traditional Signal Control Methods

Current traffic signal control systems operate either in pre-
defined fixed mode, adaptive/actuated mode, or in combi-
nation of the two. The pre-defined signal control regimes
are configured based on historical traffic data. Traffic data
is collected by continuously monitoring the traffic networks
using sensors (such as loop detectors) and subsequently
drawing inference on key information, such as establish-
ment of critical junctions and their congestion trends. How-
ever, with real-world traffic phenomena exhibiting highly-
stochastic dynamics, their irregularities cannot be a priori
anticipated based solely on historical data. An alternative is
online traffic monitoring (e.g. using inductive loop sensors)
and subsequently configuring the signal regimes in real time.

Table I summarizes some of the more-widely used meth-
ods in adaptive traffic signal control. The sensors can be
located upstream of stop lines at the entrance of link, or
downstream from the previous junction. A variety of sensors
is used to monitor traffic. The most commonly used sensors
are Loops (underground vehicle detection) and Microwave
Detectors (above-ground vehicle detection). The former de-
tect the presence of vehicles by measuring the change in
inductance when vehicles move over the loop and the latter
detect the presence of vehicles anywhere within the field
of vision as long as a vehicle is moving faster than 2-3mph.
However, sensor reliability and accuracy is of key importance
in these approaches. For instance, SCOOT is known to lose
its capability to faithfully detect traffic if 15% of the loop
sensors are faulty. Buried under the road, the loop detectors
have narrow operational range and can be easily damaged
by heavy vehicles or road deterioration. Microwave-based

sensors are unable to detect slow-moving vehicles and can
be easily obstructed by overhanging objects such as trees.

B. Reinforcement Learning-based Signal Control Methods

The classical traffic modeling and analysis tools used by
transportation planning agencies (summarized in Table I)
struggle to provide tractable policies to optimize the per-
formance of traffic signal infrastructure. Due to their com-
plexity (involving uncertainly, imprecision and randomness),
traffic dynamics form a complex, non-linear system and are
required to be modeled with complex dynamical systems.
This inspired the research community to move towards utiliz-
ing better-suited methods for real-time traffic management,
including learning-based paradigms such as Reinforcement
Learning (RL) [3]. RL was first applied to traffic light control
in the 1990s, with the first techniques limited to tabular-Q
learning [17]. Table II compares the recent work on traffic
signal dynamic control using DRL. Most of the previous
works on DRL-based traffic light control [12], [13], [14], [16]
does not consider high-dimensional perpetual inputs. The
state representation they use consists of hand-crafted traffic
features; a Boolean-valued vector specifying the presence of
a vehicle at the intersection. Along with this Boolean vector,
some research works also include a vector recording vehi-
cles’ speed. We believe that these vectors do not render the
complete traffic state representation such as types of vehicles
and their exact position. Furthermore, all these studies rely
on SUMO [18] to simulate traffic. We believe that certain
aspects of SUMO (such as its random incident management
protocol [19]) trade away the inherent complexities of vastly
stochastic traffic dynamics for tractability of analysis. This
hinders the applicability of the resulting solutions to a real
world setting.

Mousavi et al. [15] used raw pixels to analyse the prevail-
ing situation of the junction. We believe that their research
work takes a step in the right direction, but the simulation
tool they used to test and evaluate their research approach;
SUMO, is not photo-realistic and as previously discussed,
does not incorporate the full complexity of urban traffic
[19]. This is likely to limit their agent’s ability to track
all significant features and its readiness to be transferred
to a real environment. Furthermore, their work does not
explore agent’s performance in variable environments such
as varying traffic densities and it is unlikely to reliably be
able to respond to different vehicle types (such as emergency
vehicles) or weather conditions. In contrast, we configure the
signal regimes under varying traffic conditions in real time
solely based on live photo-realistic camera footage (complete
3D-picture of the pertaining traffic situation). Our simulation
platform; Traffic3D [20] gives the learning agent a natural,
unstructured and interactive environment to operate on.

C. Traffic Simulation

Researchers in the area of traffic and transportation main-
tain that simulations provide a safe, controlled and acceler-
ated environment for protocol development. The most promi-
nent state-of-the-art traffic simulators often fail to deliver



Control Technique Traffic Data Control System Optimizing Performance Metric

SCAT [8] Online data (from stop-line downstream
detectors) Centralized Junction throughput, travel time

SCOOT [8] Online data (from upstream detectors) Centralized Delay, stops and congestion
UTOPIA [9] Online data (from upstream detectors) Centralized Delay and stops

MOVA [10] Online data (from a single upstream
detector) Decentralized Delay, congestion and stops

OPAC [11] Online data (from upstream detectors) Decentralized Delay and stops
Our study Online data (from cameras) Centralized Traffic throughput, junction travel-time

TABLE I: Summary of techniques used for adaptive traffic signal control.

Research Study State Space Reward Simulator

Van der Pol and Oliehoek [12] Position of vehicles Teleport, wait time, stop, switch and delay SUMO
Genders and Razavi [13] Position & speed of vehicles Cumulative delay SUMO

Gao et al. [14] Position & speed of vehicles Cumulative wait time SUMO
Mousavi et al. [15] Raw pixels Cumulative delay SUMO

Liang et al. [16] Position & speed of vehicles Cumulative wait time SUMO

Our study Raw pixels +1/car passing through the junction and
-1/car waiting at the stop line

Our Simulator
(Traffic3D)

TABLE II: Summary of recent deep reinforcement learning-based traffic light control research studies.

important functionalities that are fundamental to authentic
traffic simulation. They lack in realism, richness, diversity
and perception challenges of the real-world [19]. To address
the discrepancy between simulations and real-world traffic
characteristics, we created a traffic micro-simulation tool,
Traffic3D [20], [21]. Traffic3D allows us to have traffic
dynamics that are being generated through the simulation,
encompassing all the emergent properties of the traffic enti-
ties, without making any explicit assumptions or aggregated
models of these properties. For e.g. we precisely calibrate
important traffic parameters including faithful modelling of
complex physical interactions between the transportation
entities based on mass, friction and other forces (such as
gravity).

Furthermore, from our research perspective, to optimize
the performance of traffic signal infrastructure using DRL,
using simulations is the only reliable way. Since the learning
agent has no prior knowledge of its environment, it is bound
to have a large amount of interactions with the environ-
ment to learn a suitable policy to effectively optimize the
signal regimes. This makes it infeasible to train an agent
in the real world (due to economic and safety concerns),
which persuaded us to develop our high-quality 3D traffic
simulation platform. Traffic3D, rich in content and struc-
ture, effectively reproduces real-world dynamic and diverse
traffic scenarios; encompassing adequate physical and visual
behavior of traffic entities (such as photo-realism, faithful
simulation of individual vehicle behavior and precise physics
of vehicle movement). In [21], we discussed the merits
and demerits of Traffic3D compared to other state-of-the-
art traffic simulation platforms. Fig. 1 shows an example of
our simulator’s graphical display.

III. BACKGROUND AND NOTATION

In this section, we discuss the underlying concepts in-
volving our signal control agent’s implementation - Deep

Reinforcement Learning.

A. Deep Reinforcement Learning

In a typical RL setting [22], an agent learns to act in
an unseen physical environment by interacting with it. The
agent improves its learning by receiving a scalar feedback
from the environment. The basic RL loop demonstrating
this interaction encompasses an agent receiving environment
observations, selecting actions to maximize a reward signal
and receiving feedback from the environment to analyse
the quality of action taken. A standard RL framework is
modelled mathematically as a Markov Decision Process
(MDP), defined as a tuple < S,A, T,R, γ >, where S and
A are the state and action spaces, respectively. γ ∈ (0, 1)
denotes the discount factor, which models the relevance of
immediate and future rewards. After observing a state, an
agent working under the policy π : S 7→ A produces an
action. Given current state st and action at, the transition
function : S × A × S 7→ R+ determines the distribution of
the next state st+1. The reward function R is determined by
R : S ×A 7→ R.

An episode τ ∼M with horizon H is a sequence of state,
action, reward (s0, a0, r0, . . . , sH , aH , rH) at every time-step
t. The discounted episodic return of τ is determined by Rt =∑H
t=0 γ

trt. Given the agent’s policy π, the expected episodic
return is defined by Eπ[Rτ ]. The expected episodic return is
maximized by the optimal policy π∗

π∗ = arg max
π

Eτ∼M,π[Rτ ]. (1)

A deep neural network (πθ) [6] with parameters θ in the
high-dimensional RL settings represents policy π∗. The agent
aims to learn θ∗ that achieves the highest expected episodic
return,

θ∗ = arg max
θ

Eτ∼M,π[Rτ ]. (2)



1) Policy Gradient Reinforcement Learning: Neural
Network-based function approximation [6], to map input
traffic state to a traffic signal control action, is essential for
RL to be effective in large high-dimensional state spaces. A
dominant approach has been value-function approximation,
in which the action-selection policy is implicitly represented
as a ‘greedy’ policy with respect to the estimated values (for
instance, as the policy which selects the action with highest
estimated value in each state). The value function approach
is known to work well in many applications, but it has
many limitations such as it cannot efficiently learn stochastic
policies and it is less-effective in high-dimensional action
spaces [23]. In the current work, we explore an alternative
approach to function approximation, a policy-based approach
(known as Policy Gradient). Instead of estimating the value
function, a stochastic policy is directly estimated using
an independent function approximator (a neural network),
whose input is some representation of the current state of
the environment (st), it generates as output action selection
probabilities (from which an action at is sampled) and whose
weights are the policy parameters. The objective stated in Eq.
2 can be achieved using policy gradient RL by stepping in the
direction of E[Rτ∇logπ(τ)]. This gradient can be converted
into a surrogate loss function (LPG),

LPG = E[Rτ log π(τ)] = E

[
Rt

H∑
t=0

log π(at|st)
]

(3)

such that the gradient of LPG is equal to policy gradient.
Our research approach centers around integrating a re-

inforcement learning algorithm (i.e. Policy Gradient) with
a deep convolutional neural network (DCNN), which di-
rectly learns from RGB images to configure effective signal
regimes. We use a DCNN in our research, as DCNNs have
yielded a substantial performance boost for various visual-
based tasks [6].

IV. OUR AUTONOMOUS INTERSECTION SIGNAL
CONTROL PROTOCOL

In this section, we set out our formulation for the au-
tonomous traffic signal control problem.

A. Problem Formulation

Vision-based traffic signal control requires a mapping from
visual sensory signals to configuration of signal regimes. Our
agent’s goal essentially is to learn an end-to-end mapping
from photo-realistic images (depicting a 3D traffic setting)
to an action (controlling signals). It does so using a DRL
model, which aims at learning an effective policy function π∗

with a representation of current state st as input, to produce
the probability distribution over the action space A.

B. Learning Environment Setup

We define the key ingredients of our DRL environment
setup including the observation, action spaces and reward
signals.

1) Observations: We utilized real world traffic videos
as a reference and meticulously studied real world traffic
dynamics to create physically intelligent and photo-realistic
3D-traffic intersection scenarios. In our traffic simulator;
Traffic3D, material, texture, light and scale work in synergy
to make digital content look as close to a real scene as
possible [20], [21].

For our signal control optimization task, we define a traffic
environment E, consisting of a four-way road intersection
(shown in Fig. 1). Traffic flows in directions - east (E),
west (W ), north (N ) and south (S). A four-way junction
consists of four traffic lights, all managed by a single signal
control agent which decides the configuration of these traffic
lights based on prevailing traffic situation in and around
the intersection. Our learning agent perceives the current
situation of the traffic using visual signals i.e. RGB images
taken by a camera placed at the intersection. To economise
on memory and accelerate the training process, we re-
size the images to a compact resolution of 100 x 100.
This is highlighted to aid in fully appreciating our results;
downsizing the images causes degradation in their quality
and may adversely affect the effective recognition of objects
within the traffic environment.

2) Action Space: We define a fixed set of discrete action
space A, deciding the configuration of traffic signal regimes.
For a four-way intersection (shown in Fig. 1) with four traffic
lights < L1, L2, L3, L4 >, the action space includes four
actions < A1, A2, A3, A4 > such that each action controls
each traffic light < A1 7→ L1, A2 7→ L2, A3 7→ L3, A4 7→
L4 >. Essentially, the agent decides which directions of
travel get a green light and for how long. We have a
minimum green signal time of 5 seconds, while maximum
green signal time is decided by our agent depending on the
traffic density and the type of vehicles around; e.g. in the
presence of an emergency vehicle, our agent switches the
signals to prioritize its movement through the intersection
while ensuring safety for all vehicles.

3) Reward Design: Transportation engineering literature
reflects that both delay and throughput are the suitable
measures to indicate the overall state of the traffic [24].
Throughput and delay are inversely proportional to each
other and optimizing delay also optimizes throughput and
vice versa. In the current work, our agent’s focus is to
optimize the traffic throughput across a junction and conse-
quently decreasing the junction traversal time and delay for
vehicles, a task for which two reward signals would suffice:
(1) a success reward for vehicles safely passing through
the junction; and (2) a penalty for vehicles waiting at the
junction.

C. Training Protocol

To explicitly learn an effective policy πθ(a|s) via DRL,
that implicitly maximizes reward over all policies, our agent
is supported by a DCNN as a non-linear function approxi-
mator, where action a at time t can be drawn by:

at ∼ π(st|θ) (4)



Fig. 2: Our Learning Agent’s Network Architecture.

where, θ denotes the model parameters and st is the 100 x
100 x 3 RGB image, representing the current observation of
the traffic environment. Based on the implemented actions
and predefined reward function, the rewards are observed
and gradients are computed, as per Eq. 5,

∇θJ(θ) ≈
1

N

N∑
i=1

( T∑
t=1

∇θlogπθ
(
ait|sit

))( T∑
t=1

r
(
sit, a

i
t

))
(5)

where J(θ) denotes the loss function, T = 100 and N =
10. A local maximum in J(θ) is searched by ascending the
gradient of the policy with respect to parameters θ. ∇θJ(θ)
is the policy gradient and α is a step-size parameter. The
policy is updated in the direction of the gradient, illustrated
in Eq. 6, to encourage the actions leading to good outcomes
and discourage less desirable ones.

θ ← θ + α∇θJ(θ) (6)

D. Network Architecture

Our DCNN is composed of three convolutional layers
(C1 with 16 output channels, C2 with 32 output channels
and C3 with 32 output channels) and one fully-connected
layer (F4 with 2952 neurons). We train this network with a
RMSProp optimizer [25] of learning rate 0.001. As illustrated
in Fig. 2, the network takes an RGB image as input of the
current traffic situation and produces the action probabilities
as output, from which an action deciding on the current
configuration of the traffic signal regime is sampled. Our
traffic scene input image (shown in Fig. 2) gives our deep
learning network (DNN) an opportunity to explore many
more traffic features than just counting the vehicles (as
conventionally done by induction loops).

V. EXPERIMENTS AND RESULTS

Our experiments are based on the learning network ar-
chitecture (shown in Fig. 2), described in Section IV-D.
To validate our research findings, we perform comparisons
against the following baselines: (1) standard, non-adaptive
signal control, (2) induction loop-based adaptive signal con-
trol for a single junction (as shown in Fig. 1). Multi-junction
optimisation is an interesting extension, which we leave for
future work. We evaluate our research findings based on two
performance metrics; (1) junction travel time (i.e. the time
period between the vehicle reaching the junction stop-line
and the vehicle reaching the end of the junction), and (2)
the macroscopic fundamental diagram (MFD) [7].

A. Performance in uniform and varying traffic density

We conducted a training experiment, based on architec-
ture shown in Fig. 2. Our agent learns an effective policy
approximately half a million time-steps into training, based
on a reward design of +1/car passing through the intersection
and -1/car stopping at the start of the intersection (stop-line).
The policy achieves levels of throughput that significantly
outperform our baselines - for brevity we did not include
the training plot here.

1) Experiment Description: We use the learned policy
(i.e. our trained agent) to perform evaluation experiments
to demonstrate the efficacy of our agent in two settings:
(1) Uniform and constant traffic generation in all directions.
(2) Varying and random traffic generation in each of the
directions. In the uniform traffic generation scheme, cars
are spawned with a constant uniform density distribution
(1000 cars/hour/lane), while in the varying traffic generation
scheme, cars spawned follow a variable random density
distribution ranging between very high traffic arrival rates



(a) (b)

Fig. 3: Graphs depicting cars’ junction travel time versus number of cars observed from the start of the experiment. We
plot the moving average of 100 cars’ junction travel time. The lower the junction travel time, the better. (a) Uniform and
constant traffic density (left), varying and random traffic tensity (right) based on a learned policy vs. fixed and adaptive
traffic signal control baselines. (b) Signal optimization training plot on a rainy day and dimly-lit night vs. fixed and adaptive
traffic signal control baselines.

at some instants (5000 cars/hour/lane) and no traffic at all at
other instants, i.e. the situation where vehicles are spawned
on a road leading to the intersection. Our agent decides
which lane should be given green signal and for how long.
The cars can either go straight or turn right (path selection
probability is parameterizable in our simulator [21]). After a
fixed minimum green signal time of 5 seconds, the agent may
autonomously decide whether to switch to red depending on
the traffic around the intersection.

2) Results: To evaluate our DRL agent’s performance
in terms of reduced junction traversal time for individual
vehicles, we use junction travel time versus number of
cars metric. The graphs shown in Fig. 3 depict our agent’s
performance based on average junction travel time (y-axis)
over the number of cars (x-axis). We plot 100 cars’ junction
travel time’s moving average. The lower the junction travel
time, the better. The number of cars shown in x-axis represent
the total number of cars spawned into the traffic scene
during the evaluation phase (i.e. 20,000 cars each in uniform
traffic scheme and varying traffic scheme). N.B. the x-axis
represents the total number of cars being spawned into the
scene in the complete evaluation phase (i.e. at x = 20, 000,
we do not mean that there are 20,000 vehicles in the scene,
but that 20,000 vehicles have navigated through the junction
from the start of the experiment).

Ideally, the optimal delay for an individual vehicle is no
delay at all. In order to create a worthwhile benchmark
against which we compare our research approach, we con-
sider junction travel time under freeway optimal conditions,
i.e. where each vehicle is able to travel through the junction
as soon as it arrives at the start of the junction. This is
plotted as the Under Optimal Freeway Condition line. As
shown in the Fig. 3(a), our agent performs significantly
better than both fixed and adaptive baselines under both

uniform and varying traffic schemes. It is noteworthy that
our trained agent’s performance does not significantly change
with uniform and varying traffic density distribution. We
believe that using visual sensors to detect traffic is highly
beneficial. As observed during the training, our agent is able
to effectively detect the presence of cars even when they have
not arrived at the junction and are far from it but within the
camera range. The agent is also able to infer cars’ speed
based on their positions in consecutive frames, which equips
it to timely decide the configuration of traffic signal regimes
to minimize delay for individual cars. This is in contrast to
the adaptive systems used in real world (such as induction
loops) to detect traffic, which have some grave limitations
in terms of narrow operational range and poor detection of
small vehicles, among others. Also, the fixed and adaptive
systems work on a maximum green time period set by the
user. As reported in the literature, maximum green time is
usually set between 90-120 seconds [26], this can lead to
setting the green light for longer than it is needed.

B. Impact of different lighting and adverse weather condi-
tions

1) Experiment Description: We aim at creating an agent
that is robust to different variants of its environment. Our
simulator; Traffic3D allows us to realistically simulate dif-
ferent weather (such as rain and snow) and lighting (such
as dimly-lit night) conditions with photo-realistic lighting
and texture. To establish the resilience of our agent in dim
lighting and adverse weather conditions, we simulated a
dimly-lit night scene and a rainy day scene within our traffic
environment. Apparently the rain and dim-lighting degrade
the quality of the visual data, however our agent is still able
to learn to optimize the traffic flows, which can be seen in
figure 3(b) (shown in red and maroon).
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Fig. 4: The MFDs demonstrating our DRL (Policy Gradient) agent’s performance vs adaptive traffic signal control baseline
baseline. (a) Density vs Flow of all vehicles. (b) Density vs Speed of emergency vehicles against civil vehicles.

2) Results: The performance metric (junction travel time)
used here is same as the previous section. Rain does not have
much of a negative impact on our agent’s performance, our
agent quickly learns to optimize the movement of vehicles
through the junction (red) on a rainy day. However, when
exposed to a dimly-lit night, our agent starts to learn slowly
as the dark pixels significantly reduce the visibility. But it
eventually reaches its peak performance (maroon).

Our agent, when exposed to both adverse lighting and
weather conditions, performs significantly better than both
fixed and adaptive baselines, which marks our agent’s re-
siliency to different conditions it is exposed to.

C. Macroscopic Fundamental Diagram

In this paper, we consider an intersection shown in Fig. 2
and we collect downstream traffic data from our DRL-
optimized signalized traffic junction. We derive the relation-
ships between macroscopic variables; (1) density and flow,
(2) density and speed. We collect vehicle count and speed
of individual vehicles after the vehicles have safely passed
through the junction. We then calculate density (i.e. number
of vehicles per kilometer) by dividing the vehicle count by
average distance travelled by vehicles. We estimate each
individual vehicle’s speed by dividing the distance travelled
by time taken. We then compute flow (i.e. number of vehicles
per hour) by multiplying density with average speed of all
the vehicles passing through the junction in a time window
of 15 seconds. We sample density, speed and flow every
15 seconds. Within our traffic simulator, the elapsed-time
metrics correspond to the actual real world time metrics.

1) Experiment Description: In this set-up, we perform
two sets of experiments (both based on intersection and
architecture shown in Fig. 2); (1) To demonstrate relationship
between Density and Flow for all the vehicles, irrespective
of their type and corresponding relevance (by relevance
we highlight the importance of public transport and emer-
gency vehicles over civil vehicles). For this experiment, we

contrast our DRL-optimized junction’s performance against
the adaptive junction controlled by induction loop. (2) To
demonstrate relationship between Density and Speed for
emergency vehicles (such as police cars, ambulances and
fire trucks) and civil vehicles. For this experiment, we
associate with emergency vehicles a higher positive reward of
+5/emergency vehicle for passing through the junction and a
higher negative reward of -5/emergency vehicle for waiting at
the stop-line. The reward design of all other vehicles remain;
+1/car passing and -1/car waiting. After training our agent
to prioritize the movement of emergency vehicles over civil
vehicles, we collected the macroscopic traffic variables to
plot the relationship between density versus emergency and
civil vehicles’ speed.

2) Results: As shown in Fig. 4(a), our DRL-optimized
junction (blue) allows more efficient movement of vehicles
as compared to adaptive traffic signal control baseline (pink).
At the critical density (i.e. the maximum number of vehicles
a road segment can effectively accommodate), the cumulative
flow of the adaptive baseline system is much lower than the
cumulative flow of our DRL-optimized traffic signal control.
This establishes our agent’s competency in facilitating vehi-
cles’ rapid navigation through the intersection.

For the emergency versus civil vehicles experiment, for
the given densities, we plot the moving average speed of
100 emergency vehicles versus civil vehicles. It can be
inferred from Fig. 4(b), our DRL agent is able to successfully
prioritize the navigation of emergency vehicles over civil
vehicles.

VI. SUMMARY OF RESULTS

Our simulation results show that our DRL agent, equipped
with real-time visual traffic data is able to to significantly
optimize the movement of vehicles through the road inter-
section in different traffic situations. To affirm our agent’s
efficacy, we also derive the relationship between macroscopic
traffic variables. We visualized our DCNN to know where
exactly it sees while making a decision, but due to brevity



we did not include results here. Our agent significantly
outperforms the state-of-the-art fixed and adaptive systems. It
is also able to prioritize the movement of emergency vehicles,
resulting in their significantly higher speed as compared to
the speed of civil vehicles. However, our DRL agent takes
a long1 time to learn to effectively configure the signal
regimes. We are currently exploring alternative architectural
designs for Traffic3D, alongside transfer learning techniques
for DRL [27] to boost its performance.

VII. CONCLUSION AND FUTURE WORK

This paper presents an end-to-end trainable DRL agent
to autonomously optimize the performance of traffic signal
control systems. Our agent is able to effectively perceive the
traffic situation in and around an intersection, solely using
visual sensory data captured in real-time. It continuously
modifies the traffic signal regimes, as per changing obser-
vations. Compared to the state-of-the-art traffic simulation
tools, our experimentation environment is significantly more
realistic, in terms of both physical and visual properties,
adequately capturing the reality of traffic scenarios. We
believe that the ability to train our signal control agent in a
realistic environment is key in making it possible to deploy
it in the real world.

Going forward, we intend to tackle one of the major
challenges in efficient signal control; creating meaningful co-
ordination between multiple signal control systems. Specifi-
cally, our future work focuses on creating multiple agents
to optimize traffic through collaboration and coordination
between multiple intersections, to further improve the quality
of traffic signal control systems.
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