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Abstract. Decentralised supply chain formation involves determin-
ing the set of producers within a network able to supply goods to
one or more consumers at the lowest cost. This problem is frequently
tackled using auctions and negotiations. In this paper we show how
it can be cast as an optimisation of a pairwise cost function. Opti-
mising this class of functions is NP-hard but good approximations
to the global minimum can be obtained using Loopy Belief Propa-
gation (LBP). Here we detail a LBP-based approach to the supply
chain formation problem, involving decentralised message-passing
between potential participants. Our approach is evaluated against a
well-known double-auction method and an optimal centralised tech-
nique, showing several improvements: it obtains better solutions for
most networks that admit a competitive equilibrium2 while also solv-
ing problems where no competitive equilibrium exists, for which the
double-auction method frequently produces inefficient solutions.

1 INTRODUCTION

Agent-based computational approaches to supply chain formation
model potential supply chain participants as rational self-interested
computational agents. These agents deliberate between themselves,
typically either through negotiations [5, 2] or auctions[3, 4], about
the subset of agents capable of forming the most efficient supply
chain. In this paper, we propose a loopy belief propagation-based
(LBP) approach to decentralised supply chain formation which is ca-
pable of producing efficient results over a range of network topolo-
gies from [3]. Using LBP, we are able to produce results comparable
to that of a centralised approach whilst working in an entirely decen-
tralised manner. Finally, the use of message passing allows us to take
full advantage of the graphical structure of our networks.

In section 2, we provide details of our model, inspired by work
previously conducted by [3], and explain how we use the LBP al-
gorithm to determine allocations in our model. Section 3 describes
our experiments, while in section 4 we show our results and compare
them to the results obtained by [3] and the optimal value.

2 MODEL

Following [3], we model our supply chain networks as bipartite di-
rected acyclic graphs. There are two types of node: producers and
consumers - represented by rectangles in our network diagrams (e.g.
Figure 1) - and goods, represented by circles. Edges between par-
ticipants signify the ability for those entities to produce or consume
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2 Competitive equilibrium as defined in [3] is used as a means of classifying
results on certain networks to allow for minor inefficienciesin their auction
protocol and agent bidding strategies.

goods. An edge from a participant to a good indicates that the partic-
ipant is capable of producing the good, while an edge leading from
a good to a participant means that the participant is able to consume
the good. Goods represent a single unit of an indivisible commodity.

Figure 1. A sample supply chain network, from [3]. Producers
(P1,P2,P3,P4) and consumers (C1) are represented by rectangles, with goods
represented by circles. Edges between vertices show possible flows of goods.
Numbers below producers indicate production costs, while numbers below

consumers indicate consumption values.

Agents Our supply chain networks are made up of multiple pro-
ducer agents aiming to supply a good to one or more consumer
agents. Producers are capable of producing a single unit of a sin-
gle type of output good, and to do so are required to have obtained
a single unit of each of their input goods. In producing their output
good, producers incur a production cost. Consumers require a single
unit of a single good from their set of consumable goods. In each
network, each consumer is assigned a static consumption valueVc,
representing the valuation the consumer places upon obtaining one
of its consumable goods.

States Due to the fixed structure of the networks, for each agent
there exist a finite number of purchases and sales in which the agent
is viable. We encode each of these tuples of exchanges as states, with
each state defining a list of suppliers and a buyer for producers, and
a single supplier for consumers. For example, a possible state for
producer P3 in Figure 1 is “Buy from P1 and sell to C1”. The number
of states an agent possesses increases with the number of participants
able to supply/ consume its input/output good(s). We also allow for
theinactive state, where the agent does not acquire or sell any goods.

2.1 Cost Function

We allow for two distinct types of cost in our model: unary costs, and
pairwise costs. Our method minimises the function given below:

ǫ(x1, . . . , xN ) =
∑

v∈V

fv(xv) +
∑

(u,v)∈E

guv(xu, xv) (1)

Whereǫ(x1, . . . , xN ) is the set of agents,fv(xv) is the unary cost
of agentv being in statexv, andg(u, v) (xu, xv) is the pairwise cost
of linked agentsu andv, being labeled with statesxu andvv. With
all else equal, the lower the cost, the more efficient the allocation.



Unary Cost Each agent associates each a cost with each of its
states. For all agents, the cost of being in the inactive state is zero.
For producers, the cost of active states is equal to their production
cost. Consumers assign a cost0−Vc to active states, whereVc is the
consumer’s consumption value.

Pairwise Cost To calculate the pairwise cost for two states, we
assess their compatibility. Two states are compatible if both are inac-
tive states,or the lists of sellers and buyers align such that neither is
trying to buy or sell the same good,or the states align so that agent
u wants to sell to agentv, v’s list of sellers includesu, and neither
is inactive, and vice versa. If the states are compatible, the pairwise
cost is zero; if they are incompatible, the pairwise cost is infinite.

2.2 Loopy Belief Propagation

LBP [1] involves the iterative passing of messages by nodes to each
of their neighbours encoding which state the sender believes the re-
cipient should be in. Once all agents have passed a message to each
of their neighbours, each agent updates its beliefs based upon the
content of the messages it received. This process continues until the
beliefs of the agents become stable, at which point we determine the
final state of each agent and perform allocation.

Belief Update For each of agentu’s possible states, we use equa-
tion 2 to calculateu’s belief in that state. At initialisation, each agent
holds a belief of zero about each of its states.

belu(xu) = fu(xu) +
∑

w∈Nu

mw→u(xu) (2)

belu(xu) denotes agentu’s belief in its statexu, fu(xu) is the unary
cost ofu being in statexu, andmw→u(xu) are the messages re-
ceived fromu’s set of neighboursw about statexu.

Messages At each step, each agent in the network passes a mes-
sage to each of its neighbours, consisting of a vector of values repre-
senting the sender’s beliefs about each of the recipient’s states.

mu→v(xv) = minxu
(belu(xu)−mv→u(xu)+guv(xu, xv)) (3)

Equation 3 shows the process of calculating a message to be
passed from agentu to agentv. belu(xu) corresponds tou’s belief
in its statexu, while mv→u(xu) is the message passed fromv to u

about statexu in the previous round of messages andguv(xu, xv) is
the pairwise cost of agentsu andv being in statesxu andxv. We
repeat this process for each ofu’s states, and use the minimum of
these values in the message. This process is then repeated for each of
v’s states.

Final States and Allocation Before we can perform allocation,
we assign a “final state” to each agent – the state which, at conver-
gence, the agent believes holds the lowest cost. Once the final states
of each of the agents have been determined, we measure the value of
the allocation by the equation given below, whereC is the set of con-
sumers in the allocation,Vc is the consumption value of consumerc,
P is the set of producers in the allocation, andPCp is the production
cost of producerp. This is equivalent to equation 1.

∑

c∈C

Vc −

∑

p∈P

PCp (4)

3 EXPERIMENTS

We test our method over a variety of network structures, taken from
[3]. Upon initialisation of each of the networks, the production cost
of each producer is drawn from the intervalU(0, 1). These values are
changed after each run, while consumption values remain static. As
in [3], we gather 100 results for each network, discarding runs with a
non-positive optimal result. We compare the value of our allocations
to the optimal value, calculated using local search, and to the results
of the auction protocol given in [3], categorising our results into effi-
ciency categories as follows:Negative, where the production costs of
active producers exceeds the value that the consumer(s) obtain from
acquiring their consumable good;Zero, where our algorithm does
not reach convergence;Suboptimal, where a positive non-optimal
solution was found; andOptimal, where LBP achieved the same ef-
ficiency as the centralised benchmark. These efficiency classes are
identical to those in [3].

4 RESULTS
Table 1. Distribution of efficiency classes from LBP and SAMP-SB.

Classes are Negative, Zero, Suboptimal and Optimal.

LBP % of instances SAMP-SB % of instances
Network Neg Zero Sub Opt Neg Zero Sub Opt
Simple 0.0 0.0 0.0 100.0 0.0 0.3 0.0 99.7

Unbalanced 8.0 1.0 0.0 91.0
CE 5.0 1.0 7.0 87.0

No CE 100.0 0.0 0.0 0.0
Two-Cons 0.0 0.0 0.0 100.0

CE 11.0 0.0 6.0 83.0
No CE 18.0 0.0 78.0 4.0
Bigger 0.0 0.0 0.0 100.0 0.0 0.0 4.0 96.0

Many-Cons 0.0 0.0 0.0 100.0 27.0 0.0 56.0 17.0
Greedy-Bad 0.0 7.0 0.0 93.0

CE 4.0 0.0 21.0 75.0
No CE 100.0 0.0 0.0 0.0

We see from Table 1 that our approach is able to improve upon
SAMP-SB’s performance over all networks tested. Due to the ab-
sence of producer surplus in our model, we make no attempt to dis-
tinguish between the existence of competitive equilibrium (CE) or
otherwise in our results. However, even if we compare our results
with the best case for SAMP-SB, using only those results where CE
exists, we are still able to show a clear advantage in the proportions
of our runs showing optimal efficiency, with marked reductions in
negative and suboptimal allocations.
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