
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS 1

Using the Max-Sum Algorithm for Supply Chain
Emergence in Dynamic Multiunit Environments

Maria Chli and Michael Winsper

Abstract—Supply chain formation (SCF) is the process of
determining the set of participants and exchange relationships
within a network with the goal of setting up a supply chain that
meets some predefined social objective. Many proposed solutions
for the SCF problem rely on centralized computation, which
presents a single point of failure and can also lead to problems
with scalability. Decentralized techniques that aid supply chain
emergence offer a more robust and scalable approach by allowing
participants to deliberate between themselves about the struc-
ture of the optimal supply chain. Current decentralized supply
chain emergence mechanisms are only able to deal with simplis-
tic scenarios in which goods are produced and traded in single
units only and without taking into account production capac-
ities or input-output ratios other than 1:1. In this paper, we
demonstrate the performance of a graphical inference technique,
max-sum loopy belief propagation (LBP), in a complex multiunit
unit supply chain emergence scenario which models additional
constraints such as production capacities and input-to-output
ratios. We also provide results demonstrating the performance
of LBP in dynamic environments, where the properties and com-
position of participants are altered as the algorithm is running.
Our results suggest that max-sum LBP produces consistently
strong solutions on a variety of network structures in a mul-
tiunit problem scenario, and that performance tends not to be
affected by on-the-fly changes to the properties or composition
of participants.

Index Terms—Max-sum algorithm, mechanism design, supply
chain formation (SCF).

I. INTRODUCTION

SUPPLY chains are the networks of organizations involved
in the conversion of raw materials, information or ser-

vices into a end product, and the sale of this product to an
end consumer. Supply chain formation (SCF) is the process of
determining the set of participants in a supply chain, the set of
goods which are exchanged between the participants, and the
terms of these exchanges [1]. The traditional manual approach
to the formation of supply chains involves time-consuming
periods of contract tendering and negotiations. As uncertain
markets and an increasing need to capitalize on emerging busi-
ness opportunities combine to necessitate increased speed in
commercial decision-making, there exists a growing need for
automated support.

Manuscript received September 12, 2013; accepted July 26, 2014. This
paper was recommended by Associate Editor M. Jeng.

M. Chli is with the Department of Computer Science, Aston University,
Birmingham B4 7ET, U.K. (e-mail: m.chli@aston.ac.uk).

M. Winsper was with the Department of Computer Science, Aston
University, Birmingham B4 7ET, U.K. He is now with the Centre for Supply
Chain Improvement, University of Derby, Derby DE22 1GB, U.K. (e-mail:
m.winsper@derby.ac.uk).

Digital Object Identifier 10.1109/TSMC.2014.2351782

Computational approaches to SCF generally model poten-
tial supply chain participants—businesses capable of forming
a link in the supply chain—as individual computational agents
with limited information about the structure of the supply
chain as a whole. These agents express their capabilities and
costs through a mechanism, typically negotiations or auctions,
determining the subset of agents capable of forming the most
efficient supply chain. At the conclusion of this process, which
is typically completed in a fraction of the time required of the
manual approach, the supply chain is formed.

Agent-based approaches to SCF may either be central-
ized or decentralized. Centralized approaches typically make
use of combinatorial auctions to determine allocations, with
the NP-hard winner determination problem (WDP) usually
being solved with integer programming. The use of inte-
ger programming implies complete knowledge by some party
about the bids of all agents; this is an assumption which
might not always be practical or allowable in the real world.
Centralized approaches also introduce a single point of failure
into the process as well as potential problems with scala-
bility. Decentralized approaches to the SCF problem make
only minimal assumptions about the participating agents, giv-
ing them a wide range of applicability, allowing for greater
scalability than centralized approaches, but posing challenges
in determining allocations, given that agents only possess
local information about the structure of the network and the
capabilities of other participants.

In [2], it was shown that when the SCF problem is cast as
an optimization of a pairwise cost function, max-sum loopy
belief propagation (LBP) is capable of quickly finding con-
sistently optimal allocations in a decentralized manner over a
wide range of network structures. However, this paper exam-
ines a very simple scenario in which goods are only traded
one unit at a time, production capacities are not accounted
for, input to output ratio is always assumed to be 1:1 and
grants agents little autonomy—agents are forced to actively
participate for the entirety of the process and are unable to
change any of their properties, such as the price they wish
to charge for the goods they sell or their capacity, once the
process has begun.

In this paper, we propose a framework for the representation
of realistic supply chains in which multiple units of several
goods are produced and traded. The max-sum LBP-based tech-
nique for decentralized SCF presented in [2] is used as a
starting point and it is extended to accommodate the multiu-
nit, variable capacity and input-output ratio scenario. We also
present a set of experiments demonstrating the performance

2168-2216 c© 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:m.chli@aston.ac.uk
mailto:m.winsper@derby.ac.uk
http://www.ieee.org/publications_standards/publications/rights/index.html


2 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

of LBP in a truly dynamic environment, in which we test the
performance of the mechanism when faced with changes to
the properties (e.g., capacity, reserve price, etc.) and composi-
tion of participants (e.g., departure of a participant or entrance
of a new participant to the system). Our results demonstrate
that the enriched max-sum algorithm is capable of producing
optimal or near-optimal allocations over a range of network
topologies in both static and dynamic environments.

In Section II, we provide details of previous agent-based
techniques for SCF, focusing on their ability to deal with
multiunit exchanges, additional constraints such as factory
capacities, and dynamic settings. In Section III, we describe
our framework for the representation of multiunit supply
chains, and in Section IV, we explain how the max-sum LBP
algorithm is applied to multiunit SCF. Section V details our
experimental procedure and our model of the dynamic envi-
ronment, while Section VI shows the results produced by
LBP in both static and dynamic multiunit environments. In
Section VII, we provide conclusions about our work, and
suggest some potential directions for future work.

II. BACKGROUND

Multiagent systems enable us to model a number of prop-
erties characteristic of supply chains, including decentralized
decision making by self-interested agents and the process of
self-organization by participants. It is no surprise, then, that
application of the agent-based paradigm to several aspects of
supply chains has been an ongoing focus of multiagent systems
research for several years, particularly in supply chain man-
agement [3], [4], most notably the trading agent competition in
supply chain management game [5], and in the area of SCF [6].
The majority of the literature on SCF involving self-interested
agents deals with the use of market-based approaches to elicit
costs and capabilities from participants, with auctions being
the most frequently used of these methods.

In this section, we examine previous auction-based
approaches to SCF and introduce the use of probabilistic
graphical models and LBP for SCF and related problems.

A. Auctions

Many approaches to SCF involve modeling the supply
chain as a network of auctions, with first and second-price
sealed bid auctions, double auctions and combinatorial auc-
tions among the most frequently-used methods. SCF through
auctions is a popular approach for a number of reasons: auc-
tions are frequently used in real-world tendering and sales
situations, they are often able to form good solutions to the
SCF problem, and some auctions are able to guarantee various
desirable game-theoretic properties. Such properties include
incentive compatibility, which means that a participant’s dom-
inant strategy is to truthfully reveal its private information;
individual rationality, where participants are guaranteed to
receive nonnegative utility by participating, budget balance,
where payments made to and by the mechanism are equal,
and allocative efficiency, where the utility of participants is
maximized. It is important to note, however, that it is impos-
sible for a two-sided mechanism to satisfy each of these four

properties simultaneously [7]. We examine the game theoretic
properties of our approach in Section VI-F.

Perhaps the most comprehensive series of studies on SCF
using auctions comes from Walsh et al. and Babaioff and Walsh,
who examine the efficiency of supply chains formed using
simultaneous double auctions [1], combinatorial auctions [9],
and one-shot double auctions [8], respectively.

1) Double Auctions: Walsh and Wellman [1] proposed a mar-
ket protocol with bidding restrictions referred to as simultaneous
ascending (M+1)st price with simple bidding (SAMP-SB),
which uses a series of simultaneous ascending double auctions.
SAMP-SB was shown to be capable of producing highly-valued
allocations—solutions which maximize the difference between
the costs of participating producers and the values obtained
by participating consumers—over several network structures,
although it frequently struggled on networks where competitive
equilibria did not exist. The authors also proposed a similar
protocol, SAMP-SB-D, with the provision for decommitment
in order to remedy the inefficiencies caused by solutions in
which one or more producers acquire an incomplete set of
complementary input goods and are unable to produce their
output good, leading to negative utility. This use of a post-
allocation decommitment stage was recognized as an imperfect
approach, however, due to the possible problems created by
rendering the results of auctions as nonbinding.

In [8], a one-shot double auction mechanism, referred to
as Trade Reduction auctions, is proposed based upon work
in [10], that sacrifices perfect allocative efficiency, in order
to guarantee incentive compatibility, individual rationality and
budget balance. The authors propose both a centralized and
a distributed algorithm for determining allocations; however,
their distributed algorithm relies on the use of mediators for
each good, communication between these mediators, and a
central coordinator agent. These factors combine to indicate an
assumption of centralization which may not always be valid.

2) Combinatorial Auctions: Walsh et al. [9] use a combi-
natorial auction protocol on a subset of the networks in [1]
to attempt to find allocations under strategic bidding behavior
by agents. Combinatorial approaches to SCF hold the advan-
tage of being able to avoid the problem of dead ends in the
presence of input complementarities by allowing agents to bid
for bundles of goods. Due to the strategic bidding behaviors
adopted by the agents in [9], the results of the combinato-
rial protocol did not represent a significant improvement on
the double auction protocol, with the quality of the solutions
found to be influenced in large part by the amount of available
surplus in the networks.

More recent work examining the multiunit case of SCF
has seen the proposal of mixed multiunit combinatorial
auctions (MMUCAs) for SCF [11], with the standard com-
binatorial model of bids being placed for bundles of goods
replaced by negotiations over “transformations,” essentially
commitments by bidders to produce a set of output goods
given a set of input goods. There exist several approaches to
solving the NP-hard WDP associated with MMUCAs, and
the quality of the solutions produced by these techniques
tends to depend on the characteristics of the network being
tested [12]. Although all existing MMUCA solvers rely on



CHLI AND WINSPER: USING THE MAX-SUM ALGORITHM FOR SUPPLY CHAIN EMERGENCE 3

integer programming and thus may face difficulties with
scalability, Giovannucci et al. [13] have improved the applica-
bility of MMUCAs to larger SCF problems by proposing an
integer program mapping which improves the computational
efficiency of the WDP calculation by taking advantage of the
structural properties of the network.

In [14], continuing with the framework of combinatorial
auctions, auctioneers are equipped with a Petri-net formalism
which under certain conditions (e.g., acyclic networks) lead to
optimal formations. Finding a local, decentralized solver for
MMUCAs and the Petri-net formalism remains an ongoing
area of research [11], [14].

3) Suitability of Auctions for Multiunit and Dynamic
Environments: Both double and combinatorial auctions are
readily generalizable to multiunit environments, although
application to this case presents combinatorial auctions in par-
ticular with a very hard problem. The most frequently-studied
form of combinatorial auctions, including all of the approaches
mentioned in Section II-A2, are one-shot mechanisms
i.e., there exists no scope for participants to change their prop-
erties or to enter or leave—each participant places a single set
of bids, and the process of computing a solution to the problem
begins immediately. Periodic auction-based approaches, such
as the SAMP-SB double auction protocol from [1], permit the
departure of existing participants or the entry of new ones dur-
ing the bidding process, and allow participants to change their
bids—although typically with some restrictions.

B. Loopy Belief Propagation

Although auctions and negotiations are by far the most
commonly-employed techniques in agent-based approaches to
the SCF problem, LBP has been used as a method for task
allocation for several years in the related area of agent-based
decentralized coordination [15], [16]. In [2], an LBP-based
approach was applied to the SCF problem, noting that the
passing of messages in LBP is comparable to the placing of
bids in standard auction-based approaches. The decentralized
and distributed nature of LBP also allows for the avoidance
of the scalability issues present in centralized approaches such
as combinatorial auctions.

LBP is a decentralized and distributed approximate infer-
ence scheme involving the application of Pearl’s belief prop-
agation algorithm [17] to graphical models containing cycles.
It uses iterative stages of message passing as a means for
estimating the marginal probabilities of nodes being in given
states: at each iteration, each node in the graph sends a mes-
sage to each of its neighbors giving an estimation of the
sender’s beliefs about the likelihoods of the recipient being
in each of its possible states. Nodes then update their beliefs
about their own states based upon the content of these mes-
sages, and the cycle of message passing and belief update
continues until the beliefs of each node become stable.

1) Probabilistic Graphical Models: Probabilistic graphical
models are a means for encoding probability distributions over
a set of variables using graphs [18]. Graphical models may
be directed or undirected. Directed graphical models, known
as Bayesian networks (BNs), represent qualitative dependence
between variables—an arc from node i to node j indicates

that i causes j, as well quantitative statistical dependence—an
arc between nodes also corresponds to a conditional proba-
bility of the state of a child node given its parent(s)—p(xj|xi)

represents the probability of xj given xi. Undirected graphi-
cal models—Markov random fields (MRFs)—are useful for
representing symmetric dependencies between variables. In
MRFs, as in BNs, adjacency (through an undirected edge)
of nodes indicates dependence, while nodes which are not
directly connected are strictly independent.

2) Max-Sum Loopy Belief Propagation: The most com-
monly used version of LBP, the sum-product algorithm, is
used to estimate marginal probabilities at individual nodes.
Because we are interested in finding the optimal state config-
uration of the network as a whole rather than the most likely
state of any one node, we use a well-known variant of LBP,
the max-sum algorithm, to estimate the maximum a posteriori
(MAP) assignment of our supply chain networks. Max-sum
LBP is well-suited as a means for allocation determination
in SCF for a number of reasons. First, as mentioned earlier,
the formalism introduced in [1] for the representation of sup-
ply chains as task dependency networks—bipartite directed
acyclic graphs with nodes representing producers, consumers
and goods linked by edges representing potential flows of
goods, allows for easy conversion into pairwise MRFs suit-
able for inference once explicit representation of goods in
the graphs is removed. Replacing the process of bidding in
auctions with message passing between agents allows partici-
pants to share their beliefs about the optimal structure of the
supply chain without revealing any more private cost informa-
tion than they would in an open auction. LBP operates in a
decentralized and distributed manner, properties important for
the realistic representation of separate self-interested business
entities. Finally, LBP is able to quickly and reliably produce
exact results in tree-structured and single-cycle networks while
still producing good approximations in more loopy networks.

3) Loopy Belief Propagation Properties: While LBP is
known to converge to exact results in a finite number of iterations
on tree-structured graphs, there is no such guarantee for more
loopy graphs, and if convergence is reached, the solution will
be an approximation, unless the graph contains only a single
loop [19]. Work by Vinyals et al. [20] has established worst-case
bounds on the quality of solutions produced by max-sum LBP,
although these guarantees hold only when all unary and pairwise
potentials are nonnegative, which is not the case in our model.
Despite these limitations, our application of LBP to decentral-
ized SCF is shown to outperform alternatives (see Section VI).
LBP has seen great success in a number of areas, including
turbo codes [21] and low density parity check codes [22], stereo
vision [23], as well as in the related field of communication
in sensor networks [15], [24]. The application of LBP in sup-
ply chain problems is becoming more widespread with work
in [25] putting forward binary factor graphs to address scal-
ability concerns associated with larger networks. This effort,
however, did not succeed in producing supply chains whose
efficiency approximates that of centralized allocations. Further
work, Penya-Alba et al. [26] use LBP and mediators in a decen-
tralized manner to achieve higher solution quality. All these
approaches are limited to single-unit product exchanges.



4 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

Fig. 1. Simple supply chain TDN from [1] extended to the multiunit case.
Producers (P1, P2, P3, P4) and a consumer (C1) are represented by rectan-
gles, while goods are represented by circles. Edges between vertices indicate
potential flows of goods. Numbers immediately below producers represent
reserve prices, while numbers immediately below consumers indicate con-
sumption values. The values given below reserve prices and consumption
values indicate production capacities for producers and desired consumable
good quantities for consumers, respectively, and are measured in whole units
of the good in question. Edges from goods to producers are labeled with the
producer’s input to output ratio for that good.

III. MODEL

The use of task dependency networks (TDNs) for the rep-
resentation of supply chains was originally proposed in [1].
They offer an effective shorthand for SCF problems and the
networks introduced in Section III-D have been used as a
benchmark in the literature to facilitate comparison. TDNs
allow for a compact representation of the characteristic fea-
tures of SCF. The first of these features is hierarchical subtask
decomposition. Supply chain participants are specialized and
are only capable of completing specific tasks (i.e., producing
a certain type of good). In order to complete their task, they
are often reliant on the completion of subtasks (the produc-
tion of their input goods) by producers upstream in the supply
chain. The second, resource contention, means that multiple
participants may rely on common resources, such as goods
produced upstream in the supply chain. If these resources are
scarce, then these participants may be unable to participate
simultaneously in the supply chain. This serves to constrain
the number of possible solutions for a given set of participants.
Resource scarcity also leads to the exposure problem, a situ-
ation in which participants acquire an incomplete set of their
input goods and are thus unable to produce their output good.

For the first time, we extend the TDN representation with
input to output good ratios, production capacities and con-
sumer desired good quantities in order to model the multiunit
case. This requires an example of the extended representation,
as shown in Fig. 1. Production capacities and consumer-
desired good quantities are measured in whole units of the
good in question. A producer with a single input and an input
ratio of 2 for that good requires two units of that good in order
to produce one unit of its output, four units of that good to
produce two of its output, and so on.

In our example, we see that producer P1 is able to produce
up to 2 units of good 1, at a cost of 0.223 for each unit it
produces. Producer P3 requires 2 units of good 1 (as signified
by the edge from good 1 to P3) to produce a single unit of its
output good, good 3. Although P3 has the capacity to produce
up to 2 units of good 3, this would require P3 to obtain 4 units
of good 1, which is not possible in this network instance given
P1’s maximum output capacity of 2. Similarly, producer P2 is
able to produce up to 3 units of good 2 at a cost of 0.619 per
unit, and producer P4 requires 2 units of this good in order to

produce one unit of good 3. Consumer C1 desires a maximum
of 2 units of good 3, and obtains a consumption value of 1.216
for each unit of good 3 that it acquires.

A. Producers

Producers are capable of producing multiple units of a
single type of output good. At initialization, each producer is
assigned a production capacity which specifies the maximum
number of units each producer is able to produce of its output
good.

In order to produce one unit of their output good, producers
are required to acquire a number of units of each of their input
goods equal to their input to output good ratio for that good.
In order to produce two units of their output, producers require
twice as many units of their inputs as for one good, and so
on. Input to output good ratios are assigned to producers at
initialization, and each producer may have different ratios for
each of their input goods. Producers which do not require any
inputs to produce their output good are known as no-input
producers, and form the initial echelon of the supply chain. If
a producer requires multiple types of input good, we refer to
these goods as complementary. A producer cannot produce its
output good unless it acquires all the necessary input goods.

Producers attach a reserve price Rp in producing their out-
put good, which is a producer-specific constant. Reserve prices
model the expense incurred by a producer in producing a sin-
gle unit of their output, plus some small additional fixed profit
margin. They therefore can be said to be equivalent to sale
price of a single unit of the producer’s output good. The total
price charged by a producer is linear with the number of units
of its output good that it produces: if a producer manufactures
two units of its output good, it charges a price equal to 2Rp,
3Rp if it produces three units, and so on.

B. Consumers

Consumers seek to acquire a number of units of their con-
sumable good no greater than their desired consumable good
quantity. In each network, each consumer is assigned a static
consumption value Vc: this is the valuation the consumer holds
for obtaining a single unit of its consumable good. Similar to
reserve prices, the total value a consumer receives is linear
with the number of goods a consumer obtains: if a consumer
acquires two units of its consumable good it receives 2Vc, if
it acquires three units it receives 3Vc and so on.

C. Complementary Goods and Exposure

Some producers require multiple types of goods in order to
produce their output good. This situation is referred to as an
instance of input complementarity. Input complementarities,
in the presence of resource contention, constrain the num-
ber of possible solutions to a supply chain network. Input
complementarities also introduce the exposure problem in
noncombinatorial approaches to SCF. The exposure problem
occurs due to the fact that producers must acquire complemen-
tary goods individually. This leads to the risk of the producer
acquiring some but not all of their required input goods.
Combinatorial approaches avoid this problem by allowing



CHLI AND WINSPER: USING THE MAX-SUM ALGORITHM FOR SUPPLY CHAIN EMERGENCE 5

Fig. 2. Simple network from [1].

Fig. 3. Two-cons network from [1].

Fig. 4. Greedy-bad network from [1].

producers to bid on bundles of goods. Our LBP approach lim-
its the exposure problem somewhat by encoding all of each
producer’s required inputs in each of their active states. The
concept of states is explained in greater detail in Section IV-B.

D. Networks

For comparison and evaluation purposes we utilize a set
of network structures used in [1], complemented by the huge
network which we designed to show the performance of our
mechanism on a very large network. In this section, we present
these network structures and discuss their characteristics.

The Simple network, shown in Fig. 2, is a small three-
tier network with two possible sources for the supply of
C1’s consumable good, good 3. Two-cons (Fig. 3), introduces
the issue of complementary goods—P4 needs both goods 1
and 2 to produce its output. Because of this, only one of
the consumers in this network can be satisfied at one time.
The greedy-bad network (Fig. 4) introduces further comple-
mentarity issues. Producer P6 is a possible seller of one of
Producer P7’s input goods, good 5. However, in order to
produce good 5, P6 requires good 4, which is also one of
P7’s inputs. As P7 is necessarily present in the single optimal
solution to this network, it must buy good 5 from P5, even
if the price is more expensive than when bought from P6.
This network serves to show the weakness of greedy search-
based techniques for SCF—although P7 may be able to acquire
good 5 more cheaply from P6, in doing so it renders the rest
of the supply chain infeasible.

Fig. 5 shows unbalanced, a larger network with several
instances of complementarity. The many-cons network (Fig. 6)
is a larger tree-structured network in which multiple consumers
can be satisfied simultaneously. The Bigger network (Fig. 7)

Fig. 5. Unbalanced network from [1].

Fig. 6. Many cons network from [1].

is large with many feasible solutions. Harder, shown in Fig. 8
can be seen as a much larger version of greedy-bad: despite
the scale of this network, there exists only one possible solu-
tion due to the presence of a number of complementarities.
Finally, the huge network (Fig. 9), models a very large-scale
supply chain, with six tiers of production and three consumers.

E. Conversion to MRF Form

To convert task dependency networks into pairwise MRF
form, two simple modifications must be made: first, the explicit
representation of goods is removed from the network. Where
edges previously linked an agent to a good or a good to an
agent, edges now link agents directly, though they preserve the
notion of an edge between agents meaning a potential route of
exchange. Second, we remove direction from the edges from
the graph. As an illustration, Fig. 10 depicts the MRF form of
the supply chain network of Fig. 1. With the graph converted
into pairwise MRF form, we define the states and costs required
for the running of LBP.



6 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

Fig. 7. Bigger network, from [1].

Fig. 8. Harder network, from [6].

Fig. 9. Huge network.

Fig. 10. Simple supply chain network converted into MRF form. Edges now
link agents directly, and are undirected.

IV. MAX-SUM ALGORITHM

The max-sum algorithm is a variant of LBP, a decentral-
ized and distributed approximate inference scheme involving

the application of Pearl’s belief propagation algorithm [17] to
graphical models containing cycles. It uses iterative stages of
message passing as a means for estimating the MAP assign-
ment. In our case, the MAP assignment is the network-wide
state configuration that maximizes the value of (4). At each
iteration of the max-sum algorithm, every node in the graph
sends a message to each of its neighbors. Each message gives
an estimation of the sender’s beliefs about the potential cost to
the total efficiency of the network by the states of the recipient.
Nodes then update their beliefs about their own states based
upon the content of the messages they received. The process of
message passing and belief update continues until the beliefs
of each node become stable. In Section IV-A, we discuss the
properties of LBP while the rest of the section explains our
use of the algorithm in this multiunit SCF scenario.

A. Properties of Max-Sum Algorithm

LBP is known to converge to exact results in a finite num-
ber of iterations on tree-structured graphs. While there is no
such guarantee for more loopy graphs, and if convergence is
reached, the solution will be an approximation, unless the
graph contains only a single loop [19]. Reference [20] has
established worst-case bounds on the quality of solutions pro-
duced by max-sum LBP, although these guarantees hold only
when all unary and pairwise potentials are nonnegative, which
is not the case in our model. Despite these limitations, LBP
has seen great success in a number of areas, including turbo
codes, low density parity check codes and stereo vision, as
well as in communication in sensor networks [15], [24], and
more recently, in supply chain emergence [2], [25]–[27].

B. States

In our implementation of the max-sum algorithm for supply
chain emergence, for each agent there exists a finite number
of purchases and sales (if the agent is a producer) in which
the agent is viable, i.e., it acquires the necessary number of
units of its input goods and sells the corresponding quantity of
its output good. We encode each of these tuples of exchange
relationships as states. For producers, each state defines a list
of suppliers, a quantity bought from each supplier, a list of
buyers and the quantity sold to each buyer. For consumers, a
state lists a set of suppliers and the quantity bought from each
supplier. For example, a possible state for producer P3 in Fig. 1
is “Buy 2 units of good 1 from P1 and sell to 1 unit of good 3
to C1.” The number of states an agent possesses increases with
the number of producers able to supply its input good(s), its
production capacity or number of desired consumable good
quantity, and the number of producers or consumers able to
consume its output good. Because we model each type of good
as an identical commodity, a producer or consumer can buy
multiple units of the same good from different producers. For
example, C1 derives equal value from acquiring 2 units of
good 3 from Producer P2 and 1 unit of good 3 from Producer
P3 as it does from acquiring 3 units of good 3 from either
Producer P2 or P3. As well as a list of active states, we also
allow for the inactive state, where the agent does not acquire
or produce any goods.



CHLI AND WINSPER: USING THE MAX-SUM ALGORITHM FOR SUPPLY CHAIN EMERGENCE 7

C. Cost Function

We allow for two distinct types of cost, denoted as fv(xv),
the unary cost for agent v of being in state xv, and guv(xu, xv),
the pairwise cost of connected agents u and v being in states
xu and xv. LBP aims to find the allocation which minimizes
these costs and thus provides the maximum surplus possible.
Our cost function is given below

ε(x1, . . . , xN) =
∑

v∈V

fv(xv) +
∑

(u,v)∈E

guv(xu, xv). (1)

ε(x1, . . . , xN) is the set of agents, fv(xv) is the unary cost of
agent v being in state xv, and guv(xu, xv) is the pairwise cost
of linked agents u and v, being labeled with states xu and xv.
With all else equal, the lower the cost function result, the more
efficient the allocation. We use the efficiency of the allocation
as a measure of the quality of a solution.

D. Unary Cost

Each agent associates each of its states with a cost. For
all agents, the cost of being in the inactive state is zero. For
producers, all active states incur a positive cost, equal to the
producer’s reserve price Rp multiplied by the number of units
the producer produces in that state. Consumers assign a neg-
ative cost to all states in which they acquire a good. If the
consumer acquires a single unit of their consumable good in
the state in question, the cost is equal to 0 − Vc, where Vc

represents the consumer’s consumption value, the value the
consumer assigns to the acquisition of its consumable good. If
the consumer acquires two goods, the cost is equal to 0−2Vc,
with the cost decreasing linearly as the number of goods the
consumer obtains increases.

E. Pairwise Cost

Pairwise costs encode the compatibility of two of the states
of a pair of neighboring agents. Two states are compatible if
agent i’s state lists agent j as a buyer and the list of sellers in
j’s state includes i, and the number of units sold by i to j in i’s
state is equal to the number of units bought by j from i in j’s
state and vice versa. They are also compatible if agent i’s state
does not list agent j as a buyer and j’s state does not list agent
i as a seller and vice versa, or if both states are inactive states.
If the states are compatible, the pairwise cost is equal to zero.
If the two states do not meet either of these conditions, they
are incompatible, and the pairwise cost of this combination of
states is equal to positive infinity.

1) Belief Update: When updating their beliefs about their
own states, agents add the unary cost of that state to the sum of
the belief values contained within the messages passed from
their neighbors in the previous step about that state. Thus,
agent i’s belief in its state xu is calculated as

beli(xu) = fi(xu) +
∑

j∈Nu

mj→i(xu) (2)

where fi(xu) is to the unary cost of i’s state xu, and mj→i(xu)

are the messages received from i’s set of neighbors j ∈ Nu in
the previous step.

2) Messages: At each iteration of LBP, each agent passes
a message to each of its neighbors in the network containing a
vector of belief values. These values correspond to the beliefs
of the sender about the potential cost to the network of each
of the recipient’s states, and are calculated using

mi→j(xv) = minxu

(
beli(xu) − mj→i(xu) + gij(xu, xv)

)
. (3)

Each message contains a value for each of recipient j’s
states. To calculate the value to be sent for state xv of j, for
each of it’s own states xu, i subtracts the pairwise cost of xu

plus the belief value in message passed in the previous step
from j about xu from i’s current belief in state xu. This process
continues until all of i’s states have been compared with j’s
state xv, at which point the minimum of these values is added
to the message, and the process is repeated for the next of j’s
states. Once values have been calculated for all of j’s states,
the message is passed from i to j.

F. Allocation

Before allocation is performed, each agent determines their
final state—the state, at convergence, in which the agent
believes holds the lowest cost. Once the final states of each of
the agents have been determined, agents share their final states
with their neighbors and the process of allocation begins. Each
agent removes edges to other agents not listed in their final
state, and agents with an inactive final state remove all of their
edges. They remove edges leading to neighbors who do not
mutually list them in their final state, or with whom there is
a mutual listing but a misalignment in terms of quantities. If,
once edges are removed, a producer is left with edges to sup-
pliers enabling it to acquire each its input goods in the desired
quantities as well as one or more edges to buyers then it is
regarded as active in the allocation. Similarly, consumers left
with edges leading to suppliers of their consumable good are
designated as active in the allocation.

G. Allocation Value

We calculate allocation values using (4). We sum the prod-
ucts of the consumption value Vc of each active consumer c
in the set of active consumers C and the number of goods
obtained by c, Ac. From this, we subtract the sum of the prod-
ucts of the reserve price Rp of each active producer p in the set
of active producers P and the number of goods manufactured
by p, Mp to produce a final allocation value

Val =
∑

c∈C

VcAc −
∑

p∈P

CpMp. (4)

H. Payments

An active producer p is paid a fee by each of the buyers of
its output good, at a price equal to the value of

Fbp = RpMpb + Mpb

Mp

∑

i∈SP

Fpi. (5)

Fbp is the fee paid from buyer b to producer p, Rp is p’s
reserve price, Mpb is the number of goods manufactured by
p for buyer b, Mp is the total number of goods produced by



8 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

producer p, Fpi is the fee paid by p to each supplier i from p’s
set of suppliers SP. Buyers pay p’s marginal cost of producing
each good they purchase plus a proportion of p’s input good
costs commensurate with the proportion of p’s total output they
purchase. No payments are made to or by the mechanism.

I. Convergence

We make use of a convergence detector agent, as recom-
mended in [1] for scenarios with multiple agents in initially
nonquiescent states, which controls termination but is other-
wise uninvolved in the workings of the algorithm. The use of
such an agent is not unrealistic for SCF settings—in the real
world, it is highly likely that SCF facilitation would be pro-
vided by a coordinating third party, who would be represented
by such an agent, rather than being instituted directly by the
businesses themselves. This means that limited communication
between participating agents and the third party is a reason-
able assumption. Indeed, this assumption of communication
with third parties is made by all market-based approaches,
whether centralized or decentralized, in the form of bids placed
in auctions or negotiation via dedicated mediator agents.

Even in decentralized approaches such as [1], the market
for a single good can ultimately be viewed as centralized,
with a single auction responsible for aggregating the bids of
multiple participants and deciding the winning bidders. The
difference between this approach and a centralized approach
is that the solution produced relies upon the result of multiple
local auctions, rather than one single global auction. Thus, the
goal in decentralized SCF is not to produce a technique for
the niche situation which requires all aspects of the process
to be completely decentralized, but to decentralize the most
important aspect of the process, which is to compute global
solutions in a local manner on the basis of limited informa-
tion. Our convergence detector agent detects convergence more
quickly and with less overhead than a distributed algorithm
for acyclic directed graphs (e.g., the Dijkstra–Scholten [28],
which involves a stage of spanning tree construction). It does
not, however, affect the computation of solutions and thus does
not centralize our approach.

It is also important to note that while the use of a con-
vergence detector agent serves to shorten the running time of
the algorithm, the fact that it is not required for the algo-
rithm to produce solutions means that it does not represent a
single point of failure. This in contrast with the auctions or
mediators present in market based approaches, the failure of
which would in all centralized approaches and the majority of
decentralized approaches—if the failed auction is for a critical
good—prevent the technique from producing solutions.

Once the LBP algorithm has begun, each agent reports to
the convergence detector agent at each iteration specifying
whether the state in which they believe holds the lowest cost
has changed since the previous iteration. If the current number
of iterations is greater than the size of the spanning tree—
as is explained in the following paragraphs—and all agents
reported that their lowest-cost state has remained the same
as the previous iteration, then the convergence detector agent
halts the algorithm, and allocation is performed. The process
of allocation is outlined in Section IV-F.

As mentioned in Section IV-A, LBP is known to converge
on tree-structured graphs in a number of iterations equal to
the graph’s diameter. Although not all of our networks are
trees, we take this value as the earliest number of iterations at
which it can be said that LBP has converged. In the absence
of an efficient, distributed and general technique for finding an
exact value for the graph diameter, we use distributed depth-
first search, according the method proposed in [29], to find
a spanning tree of the graph. The diameter of the spanning
tree is then determined using the distributed Bellman–Ford
algorithm in order to provide an upper bound for the value of
the actual diameter of the graph.

It is important to note that while the use of a convergence
detector agent serves to shorten the running time of the algo-
rithm, a random agent present in the original network can
instead perform the function of the convergence detector agent
if a fully decentralized approach is required. We refer to such
an agent as the “coordinator agent.” Once LBP has reached
a number of iterations equal to the diameter of the spanning
tree, the coordinator agent initiates a distributed breadth-first
search similar to that used to find the diameter of the spanning
tree. This time, agents send messages to their neighbors indi-
cating whether they have reached convergence or not. These
messages are propagated back to the coordinator agent. Once
the coordinator agent has received a message indicating the
convergence status of each node in the network—it is aware
of the identities of each agent, though not their costs or capa-
bilities, through the construction of the spanning tree—then it
either terminates the algorithm if all agents have converged,
or allows it to continue for a number of steps equal to the
diameter of the spanning tree.

V. EXPERIMENTS

We perform two sets of experiments, examining the effi-
ciency of the allocations produced by LBP in both static and
dynamic environments. We compare results in the static case
to multiunit reimplementations of the SAMP-SB and SAMP-
SB-D auction protocols presented in [1]. Due to the absence of
a comparable technique for our dynamic environment experi-
ments, we compare these results with those produced by LBP
in the static case.

A. Static Environment Experiments

In the static environment, we compare LBP with multiu-
nit implementations of two decentralized auction protocols
from [1]. We test each technique over 100 runs on each of the
supply chain networks given in [1]. We extended SAMP-SB
and SAMP-SB-D according to the suggestion proposed in [1]
by using multiple copies of each agent to represent each unit of
a given producer’s capacity or consumer’s number of desired
goods. Because this representation does not allow for the use
of input to output good ratios, for fair comparison we also
test LBP with all ratios set to 1, which we refer to as rati-
oless LBP. Ratios serve to constrain the number of possible
solutions in the network. We perform 100 runs of ratioless
LBP, standard multiunit LBP, SAMP-SB and SAMP-SB-D for
each network, varying input ratios and consumer desired goods



CHLI AND WINSPER: USING THE MAX-SUM ALGORITHM FOR SUPPLY CHAIN EMERGENCE 9

TABLE I
FULL LIST OF THE ALTERATIONS WE ALLOW FOR

(for LBP) as well as reserve prices and production capacities
(for all methods) between each run. We discard runs in which
the optimal allocation value, determined using mixed integer
programming, is nonpositive. Reserve prices are drawn from
the distribution U(0, 1), production capacities from the inter-
val (4, 5), consumer desired goods from (2, 3), and input to
output good ratios from (1, 2). We use these fairly large val-
ues for production capacities and consumer desired goods and
fairly low values for input to output good ratios to allow for
feasibility in larger networks; however, as long as a positive-
valued solution exists, the performance of LBP is largely
unaffected by the values used. Consumption values are fixed
at the per-network values given in [1] over every run.

B. Dynamic Environment Experiments

We perform three sets of experiments for each network in
the dynamic environment, testing LBPs ability to deal with
alterations to the structure of each network and to the prop-
erties the participants within to various extremes. Assessing
LBPs performance in these scenarios is important because the
changes to beliefs brought about as a result of these alterations
have the potential to disrupt the proper functioning of the
algorithm, while the performance of ascending auction-based
approaches such as SAMP-SB are inherently unaffected by
these changes. We describe these settings in Section V-F. For
all experiments, initial producer reserve prices are drawn from
the distribution U(0, 1), input good ratios from the interval
(1, 2), capacities from (4, 5) and consumer desired goods from
the interval (2, 3). A full list of the alterations we allow for
is shown in Table I. Parameters specific to changes involving
new entrants are explained in the following subsections.

C. New Entrants

In the interest of offering a mechanism capable of rapid
response to new entrants into the market, we allow for the
possibility of new producers and consumers entering the pro-
cess at any point before the final allocation is determined. For
the purposes of our experiments, we assign a tier value to each
good in the original, unaltered network. Goods produced by
producers with no inputs are tier 1 goods, goods produced by
producers which consume tier 1 goods are tier 2 goods, and
so on. For the purposes of these experiments, when a new

producer enters the market, it is assigned a randomly chosen
output good and an appropriate set of input goods from the
tier below its output good. The number of inputs each pro-
ducer is assigned is drawn randomly from (1, Gt) where Gt is
the total number of goods in the appropriate tier. If the pro-
ducer is assigned a tier 1 output good, it is given no inputs.
We assign input goods in this way in order to avoid scenarios
where producers are able to bypass multiple echelons of the
original supply chain by processing a low-tier good into an
output from a much higher tier, which simplifies the problem
of determining the optimal allocation, and also to prevent pro-
ducers from producing outputs of a lower tier than their input
goods, which is unrealistic. Producers are also assigned a ran-
dom reserve price, input to output good ratios and a capacity,
at the values specified in Section V-A.

Consumers are randomly assigned a consumable good from
a uniform distribution of the goods in the final tier of the
original network. For the purposes of our experiments, con-
sumption values for new consumers are set at a value randomly
drawn from a uniform distribution of the values plus or minus
10% of the consumption value of consumer C1 in the origi-
nal network. We set consumption values for new consumers
within these bounds so that the problem is not oversimpli-
fied by the entrance of consumers with very high consumption
values. Conversely, consumers with very low consumption val-
ues would be unlikely to acquire their consumable goods. The
number of goods new consumers desire is set in the same way
as for consumers present at initialization. The value used for
this property can be found in Section V-A.

D. Departures

If a producer or consumer wishes to leave the market, it
notifies each of its neighbors that it intends to leave, and then
removes all of its edges and states. Neighboring agents then
remove any states which list the departee as a buyer or seller.
In order to prevent manipulation of the mechanism, once a
participant has left the process it is not allowed to rejoin.

E. Property Changes

As shown in Table I, we allow for the alteration of each of
the following properties: producers may change their reserve
price, their input to output good ratios and production capac-
ities, while consumers may change their consumption values
and their number of desired goods.

F. Dynamic Environment: Experimental Settings

In the following subsections, we explain the details of each
of our three experimental settings.

G. Dynamic Environment Setting 1: Single Change,
Single Type

In the first set of dynamic experiments we run, we test LBPs
ability to cope with a single incidence of each of the nine
possible changes listed in Table I. This scenario tests LBPs
ability to cope with minor alterations to the original network.
We perform 100 runs of LBP on each network for each change.
In each run, a random step is selected between step 1 and AD,



10 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

the approximate graph diameter, with equal likelihood for each
step, as determined by the convergence detector agent. LBP
continues to run until convergence is detected, as is specified
in Section IV-I, or, if convergence is not reached, until the
algorithm has run for 250 steps.

H. Dynamic Environment Setting 2: Multiple Changes,
Multiple Types

In the second set of dynamic experiments, we test LBPs
performance under a series of random changes. This allows
us to assess LBPs performance under more challenging con-
ditions than in Setting 1. The number of changes for each run
is drawn from the interval (2, 5) and is varied between runs.
The step at which the first change occurs follows the same
method as in Setting 1. The steps at which each of the subse-
quent changes occur are drawn from the interval (Cprev, AD),
where Cprev is the step at which the previous change occurred
and AD is the approximate graph diameter. These values are
recomputed for every run. For this and each subsequent set of
experiments, once the final change occurs, LBP continues to
runs until convergence or until 250 steps have been completed.

I. Dynamic Environment Setting 3: More Changes,
Multiple Types

Finally, the third set of dynamic experiments model a sce-
nario similar to experimental setting 2, but this time allow for
the possibility of a larger number of random alterations. This
tests LBPs ability to cope under very challenging conditions,
with numerous changes being made during the running of the
algorithm. In this set of experiments, the number of changes
per run is drawn from the interval [6 . . . 10], and is varied
between runs.

We model a dynamic environment by removing and adding
participants, and changing the properties of existing partici-
pants. The potential alterations we allow for can be grouped
into three categories—new entrants, departures and property
changes. A full list of possible alterations, sorted by category
is shown in Table I. We explain the details of each of these
three categories in the following subsections.

J. Performance Evaluation

In both the static and dynamic environments, we run LBP
on each network until a convergent state is reached, using the
value of the allocations produced as a measure of the quality
of our solutions. If LBP does not converge before 50 iterations,
we record the result as a zero-valued allocation, which indi-
cates that no solution was found. We use lp_solve, a free mixed
integer programming solver which computes the optimal allo-
cation in a centralized manner, to provide a benchmark optimal
allocation value to compare LBP against. We present our
results in the form of average efficiency, which is calculated by
dividing the total allocation values produced by each method
over 100 runs on each network by the maximum available
value, as determined by lp_solve, over the same 100 runs. An
average efficiency of 1.000 indicates that 100% of the avail-
able value was captured on each of the hundred runs for that
particular network instance, and represents the best possible
result. Allocation values are calculated as per Section IV-G.

TABLE II
AVERAGE EFFICIENCY IN EACH NETWORK PRODUCED BY THE PROPOSED

LBP-BASED TECHNIQUE, AND THE SAMP-SB AND SAMP-SB-D
PROTOCOLS FROM [1]. A RESULT OF 1.000 IS EQUAL TO THE

CAPTURE OF AN AVERAGE OF 100% OF AVAILABLE EFFICIENCY,
WHILE A RESULT OF −1.000 IS EQUAL TO AN AVERAGE CAPTURE

OF −100% OF AVAILABLE EFFICIENCY. NOTE THAT WHILE 1.000
IS THE MAXIMUM ACHIEVABLE POSITIVE VALUE, IT IS POSSIBLE

TO PRODUCE NEGATIVE OVERALL EFFICIENCIES BELOW −1.000.
THE BIGGER NETWORK WITH RATIOS PRODUCED THE

LARGEST STANDARD DEVIATION WITH A VALUE

OF 0.12, INDICATING VERY LITTLE VARIABILITY

WITHIN OUR RESULTS

TABLE III
PER-NETWORK COMPARISON OF THE AVERAGE NUMBER OF MESSAGES

PASSED BEFORE CONVERGENCE IN MULTIUNIT LBP WITH AND

WITHOUT RATIOS COMPARED TO THE AVERAGE NUMBER

OF BIDS PLACED BEFORE QUIESCENCE IN THE

SAMP-SB PROTOCOL FROM [1]

VI. RESULTS

A. Static Environment: Average Efficiency

Table II shows the average efficiency produced by each
method—multiunit LBP without ratios, multiunit LBP with
ratios, and our multiunit implementations of the SAMP-SB and
SAMP-SB-D auction protocols. Input to output good ratios are
not present in SAMP-SB and SAMP-SB-D. We see that both
LBP-based methods are able to match or outperform SAMP-SB
on the majority of networks, whilst also matching the results
produced by SAMP-SB-D on many network instances. As
expected, LBP finds the optimal allocation 100% of the time
on acyclic networks, while still being able to produce highly
efficient allocations on more loopy networks. We also see that
LBP tended to perform better when input to output good ratios
are not present; this is to be expected since the presence of
ratios serves to constrain the number of solutions available.

B. Static Environment: Messages/Bids Before Convergence

From Table III, we see that the LBP methods tend to
require far fewer exchanges of information to converge to a



CHLI AND WINSPER: USING THE MAX-SUM ALGORITHM FOR SUPPLY CHAIN EMERGENCE 11

TABLE IV
DISTRIBUTION OF EFFICIENCY CLASSES PRODUCED BY LBP UNDER EXPERIMENTAL SETTING 1,

WHERE A CHANGE OF A SINGLE TYPE OCCURS ONCE PER RUN

TABLE V
DISTRIBUTION OF EFFICIENCY CLASSES PRODUCED BY LBP UNDER EXPERIMENTAL SETTING 1,

WHERE A CHANGE OF A SINGLE TYPE OCCURS ONCE PER RUN

solution than is required in the auction-based methods. The
number of bids and price quotes exchanged in SAMP-SB
and SAMP-SB-D are identical—the only difference between
the protocols is a post-allocation decommitment stage—so we
do not include values for SAMP-SB-D in this table. It is
also clear that despite the differences in average efficiency
between LBP with ratios and LBP without ratios, both meth-
ods converge at roughly the same point in all networks. When
price quotes are taken into account, the frequency of informa-
tion exchange in SAMP-SB tends to be orders of magnitude
greater than in LBP, offsetting the fact LBP messages tend to
encode more information and thus are of a larger size than
bids in SAMP-SB.

C. Dynamic Environment Setting 1: Single Change,
Single Type

Tables IV and V show the efficiency classes produced by
LBP over 100 runs of each alteration type over each network.
Given the absence of a comparable decentralized supply chain
reconfiguration technique in the literature, the main basis of
comparison with these results is with those of multiunit LBP
with ratios.

In the Simple network, for which multiunit LBP with ratios
achieved 100% optimality, the results of Table IV suggest

that the effect of most alterations is reasonably minor, with
at most 4% of these optimal results being converted into zero
or negative-valued allocations for eight of the nine alterations
we tested. The sole exception to this is when a new consumer
is added to the network: in this case, 20% of the original
optimal results are lost to zero or negative-valued allocations.
Efficiency loss when a new consumer added is a common
occurrence on many of our networks; this is because the addi-
tion of new vertices and edges to the original graph often also
leads to the creation of one or more cycles. As we explain in
Section II-B3, there are no performance guarantees for LBP
on graphs with multiple cycles.

For the unbalanced network, for which multiunit LBP with
ratios produced optimal results 67% of the time in a non-
reconfiguration setting with a relatively large proportion of
suboptimal results, we see that reconfiguration actually leads
to a slight improvement in the proportion of optimal results in
several instances. We speculate that the reason for this might
be that certain changes, such as a producer being removed,
may lead to the removal of cycles or a widening of the differ-
ence in efficiency between optimal and suboptimal solutions,
making it easier for LBP to find optimal solutions. We also
notice that LBP is able to deal with the removal of the sole
consumer in the network and consistently produces optimal



12 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

TABLE VI
AVERAGE EFFICIENCY FOR EACH TYPE OF CHANGE PRODUCED BY LBP IN EXPERIMENTAL SETTING 1. A RESULT

OF 1.000 IS EQUAL TO THE CAPTURE OF AN AVERAGE OF 100% OF AVAILABLE EFFICIENCY

allocations (of value zero) for this alteration on this and all
other networks with a single consumer.

Results for all other networks—Two-Cons (98% optimal
results in the nonreconfiguration multiunit case), bigger (94%),
many-cons (100%), greedy-bad (69%), harder (27%), and huge
(63%)—follow in a similar vein, with most alterations tend-
ing not to significantly change the proportion of optimal results
produced. Certain alterations, in particular the removal of pro-
ducers and consumers, appear to consistently improve the
results LBP is able to produce for most networks. Others, most
notably the addition of producers, tend to mean LBP is able to
produce slightly fewer optimal allocations. Again, we attribute
improvements in performance brought about by departures of
producers to the removal of cycles leading to less frequent
double-counting of messages and more accurate agent beliefs.
Conversely, new producers and consumers joining the network
tend to reduce performance slightly by introducing additional
cycles to the networks.

Average efficiency results for experimental setting 1 are
presented in Table VI, and follow a similar pattern to the effi-
ciency classes results. For all but the Harder network, average
efficiencies tend to be roughly similar to the values for mul-
tiunit LBP with ratios in a nonreconfiguration setting, as is
shown in Table II. Again, adding a producer seems to have
the most pronounced adverse effect, with efficiency loss of
around 25% for most networks when this alteration is made.

D. Dynamic Environment Setting 2: Multiple Changes,
Multiple Types

Table VII shows the efficiency classes produced in exper-
imental setting 2, where randomly chosen alterations occur
between 2 and 5 times per run.

Because removing a consumer leads to 100% optimality in
most networks, and negates the effect of further shocks, we
do not allow this alteration to be chosen as a random shock
in this setting or in experimental setting 3. A set of 100 runs
were performed for each network. Table VIII shows the aver-
age efficiency produced by LBP in this setting. It is clear
from these results that multiple alterations have little effect on
LBPs performance, with only very slight degradations in total
optimality for most networks.

TABLE VII
DISTRIBUTION OF EFFICIENCY CLASSES PRODUCED BY LBP UNDER

EXPERIMENTAL SETTING 2, WHERE RANDOMLY CHOSEN

CHANGES OCCUR BETWEEN 2 AND 5 TIMES PER RUN

TABLE VIII
AVERAGE EFFICIENCY FOR EACH TYPE OF CHANGE PRODUCED BY LBP

IN EXPERIMENTAL SETTING 2. A RESULT OF 1.000 IS EQUAL TO THE

CAPTURE OF AN AVERAGE OF 100% OF AVAILABLE EFFICIENCY

E. Dynamic Environment Setting 3: Many Changes,
Multiple Types

Table IX shows the efficiency classes produced in experi-
mental setting 3, while Table X shows the average efficiency
for the same experimental setting. In this setting, randomly
chosen alterations occur between 6 and 10 times per run, sim-
ulating a SCF scenario requiring a great deal of adaptation by
the mechanism. We allow for all of the alterations listed in



CHLI AND WINSPER: USING THE MAX-SUM ALGORITHM FOR SUPPLY CHAIN EMERGENCE 13

TABLE IX
DISTRIBUTION OF EFFICIENCY CLASSES PRODUCED BY LBP UNDER

EXPERIMENTAL SETTING 3, WHERE RANDOMLY CHOSEN

CHANGES OCCUR BETWEEN 6 AND 10 TIMES PER RUN

TABLE X
AVERAGE EFFICIENCY FOR EACH TYPE OF CHANGE PRODUCED BY LBP

IN EXPERIMENTAL SETTING 3. A RESULT OF 1.000 IS EQUAL TO THE

CAPTURE OF AN AVERAGE OF 100% OF AVAILABLE EFFICIENCY

Table I with the exception of the departure of consumers. As
previously stated, this is because the departure of a consumer
reliably leads to 100% optimality in most networks. When
compared to the results of experimental setting 2, we see that
LBPs performance degrades gracefully with a larger number
of changes per run. Total optimality and average efficiency
are very slightly worse that experimental setting 2 and, for
most networks, are roughly comparable to the results produced
when no reconfiguration is performed at all.

F. Game-Theoretic Properties

In this section, we analyze the game-theoretic properties
of our LBP-based approach, and compare them to those of
SAMP-SB and SAMP-SB-D.

1) Individual Rationality: A mechanism is classified as
individually rational if a participant cannot receive negative
utility by participating. As with SAMP-SB, we cannot guar-
antee the individual rationality of our approach given that
there exists the possibility of dead ends being present in our
allocations. Individual rationality could be guaranteed in our
approach using a process of post-allocation decommitment
similar to that used by SAMP-SB-D.

2) Incentive Compatibility: A mechanism is incentive com-
patible if the dominant strategy for participants is to truthfully

reveal their private valuations. At present, our mechanism is
not incentive compatible because participants may potentially
increase their utility by inflating their reserve prices. However,
there is an uncertain upper limit to this potential increase in
utility; if a producer reports a reserve price which is too high,
there may be an alternative, cheaper allocation in which the
misreporting agent does not participate. This limit is uncertain
as our agents operate under limited local information. This is
an issue for sellers in any real-life market-based scenario.

3) Budget Balance: Our approach involves no payments
either to or from the mechanism, and is therefore strongly
budget balanced. This property is also present in SAMP-SB/D,
as no payments are made to or by the auctions.

4) Allocative Efficiency: In static scenarios, LBP guaran-
tees perfect allocative efficiency on acyclic networks due to
its ability to reliably converge to the optimal MAP assign-
ment. If LBP converges on a network with a single loop,
the resulting allocation is also guaranteed to have perfect
efficiency. Because there is no guarantee of the quality of
solutions produced by LBP on networks with more than a
single loop, allocative efficiency for these networks is also
impossible to guarantee. Encouragingly, LBP showed strong
allocative efficiency on all of the loopy networks we tested.
It is also important to note that other techniques for SCF
tend to have difficulties under certain conditions: SAMP-SB
tends to perform poorly under certain sets of producer reserve
prices (specifically, prices which do not permit competitive
equilibrium—see [1] for further details) and combinatorial
approaches may face problems with scalability.

VII. CONCLUSION

Decentralized approaches for SCF provide advantages over
centralized techniques in terms of scalability and an absence of
a single point of failure. However, existing decentralized tech-
niques have tended to be applied to abstract scenarios where
goods are exchanged one unit at a time. In this paper, we
presented a technique for decentralized multiunit SCF using
max-sum LBP. We tested the performance of LBP in both
static and dynamic environments. In a static environment, our
results indicate that LBP outperforms SAMP-SB; it also per-
forms comparably to SAMP-SB-D without performing any
post-allocation decommitment. LBP also requires much less
information to be exchanged than either of the auction pro-
tocols. Our dynamic environment experiments allowed us to
evaluate LBPs performance in a setting where the algorithm is
forced to adapt to changes in the properties or composition of
participating agents. We tested the effect on efficiency produced
by each individual change, as well as the effect produced by
multiple successive randomly-chosen changes. We found that
LBPs performance remains solid when faced with the major-
ity of the changes we applied, and that performance degrades
gracefully in the presence of large numbers of alterations.

An important characteristic of the LBP mechanism for
decentralized supply chain emergence is that, unlike the
auction-based techniques, it is not a market-based approach.
While messages in LBP resemble bids in an auction, the infor-
mation they carry is significantly richer than just price. This



14 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

allows the emergence of chains that not only are efficient
in terms of cost, but also take into consideration production
capacities (and can be enriched to deal with further con-
straints such as quality, deadlines, reputation) in a consistent
and efficient manner.

In future work, we intend to focus on algorithms to unfold
loops, potentially improving performance on loopy networks.
The properties of goods could be expanded to model factors
such as quality and delivery dates. Our work on dynamic
response to changes in the structure of the supply chains
and the properties of the participants could be combined with
recent work on reliability of networks [30] to provide a mea-
sure on how resilient a particular formation is. Additionally,
because we at present assume all agents are truth-telling,
allowing for strategic behavior in the form of misrepresen-
tation of beliefs in outgoing messages presents an interesting
avenue to pursue.

REFERENCES

[1] W. Walsh and M. Wellman, “Decentralized supply chain formation:
A market protocol and competitive equilibrium analysis,” J. Artif. Intell.
Res., vol. 19, pp. 513–567, Nov. 2003.

[2] M. Winsper and M. Chli, “Decentralized supply chain formation
using max-sum loopy belief propagation,” Comput. Intell., vol. 29,
pp. 280–309, May 2012.

[3] D. Pardoe and P. Stone, “TacTex-05: A champion supply chain manage-
ment agent,” in Proc. 21st Nat. Conf. Artif. Intell. (AAAI), Boston, MA,
USA, 2006, pp. 1489–1494.

[4] M. Wellman et al., “Strategic interactions in a supply chain game,”
Comput. Intell., vol. 21, no. 1, pp. 1–26, 2005.

[5] J. Collins et al., “The supply chain management game for the 2007
trading agent competition,” School Comput. Sci., Carnegie Mellon Univ.
Pittsburgh, PA, USA, Tech. Rep. CMU-ISRI-07-100, 2006.

[6] W. Walsh and M. Wellman, “Modeling supply chain formation in mul-
tiagent systems,” in Agent Mediated Electronic Commerce II. Berlin,
Germany: Springer, 1999.

[7] R. B. Myerson, “Efficient mechanisms for bilateral trading,” J. Econ.
Theory, vol. 29, no. 2, pp. 265–281, Apr. 1983.

[8] M. Babaioff and W. Walsh, “Incentive-compatible, budget-balanced, yet
highly efficient auctions for supply chain formation,” Decis. Support
Syst., vol. 39, no. 1, pp. 123–149, 2003.

[9] W. Walsh, M. Wellman, and F. Ygge, “Combinatorial auctions for supply
chain formation,” in Proc. 2nd ACM Conf. Electron. Commerce (EC),
Minneapolis, MN, USA, 2000, pp. 260–269.

[10] M. Babaioff and N. Nisan, “Concurrent auctions across the supply
chain,” in Proc. 3rd ACM Conf. Electron. Commerce (EC), New York,
NY, USA, pp. 1–10, 2001.

[11] J. Cerquides, U. Endriss, A. Giovannucci, and J. A. Rodríguez-Aguilar,
“Bidding languages and winner determination for mixed multi-unit
combinatorial auctions,” in Proc. Int. Joint Conf. Artif. Intell., 2007,
pp. 1221–1226.

[12] B. Ottens and U. Endriss, “Comparing winner determination algo-
rithms for mixed multi-unit combinatorial auctions,” in Proc. 7th Int.
Joint Conf. Auton. Agents Multiagent Syst., Richland, SC, USA, 2008,
pp. 1601–1604.

[13] A. Giovannucci, M. Vinyals, J. A. Rodríguez-Aguilar, and J. Cerquides,
“Computationally-efficient winner determination for mixed multi-unit
combinatorial auctions,” in Proc. 7th Int. Joint Conf. Auton. Agents
Multiagent Syst., Estoril, Portugal, 2008, pp. 1071–1078.

[14] A. Giovannucci, J. Cerquides, and J. A. Rodríguez-Aguilar, “Composing
supply chains through multiunit combinatorial reverse auctions with
transformability relationships among goods,” IEEE Trans. Syst., Man,
Cybern. A, Syst., Humans, vol. 40, no. 4, pp. 767–778, Jul. 2010.

[15] C. Crick and P. Pfeffer, “Loopy belief propagation as a basis for com-
munication in sensor networks,” in Proc. 19th Conf. Uncertainty Artif.
Intell. (UAI), Acapulco, Mexico, 2003, pp. 159–166.

[16] T. Voice, R. Stranders, A. Rogers, and N. Jennings, “A hybrid contin-
uous max-sum algorithm for decentralised coordination,” in Proc. 19th
Eur. Conf. Artif. Intell. (ECAI), Amsterdam, The Netherlands, 2010,
pp. 61–66.

[17] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference, vol. 1, 1st ed. San Francisco, CA, USA: Morgan
Kaufmann, 1988.

[18] D. MacKay, Information Theory, Inference, and Learning Algorithms,
vol. 1, 1st ed. Cambridge, U.K.: Cambridge Univ. Press, 2003.

[19] Y. Weiss, “Correctness of local probability propagation in graphical
models with loops,” Neural Comput., vol. 12, pp. 1–41, Jan. 2000.

[20] M. Vinyals, J. Cerquides, A. Farinelli, and J. A. Rodríguez-Aguilar,
“Worst-case bounds on the quality of max-product fixed-points,” in Proc.
Adv. Neural Inf. Process. Syst., 2010, pp. 2325–2333.

[21] R. McEliece, D. MacKay, and C. Jung-Fu, “Turbo decoding as an
instance of Pearl’s ‘belief propagation’ algorithm,” IEEE J. Sel. Areas
Commun., vol. 16, no. 2, pp. 140–152, Feb. 1998.

[22] B. Frey and D. MacKay, “A revolution: Belief propagation in graphs
with cycles,” in Proc. Neural Inf. Process. Syst. Conf., Denver, CO,
USA, 1998, pp. 479–485.

[23] P. Felzenszwalb and D. Huttenlocher, “Efficient belief propagation for
early vision,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern
Recognit. (CVPR), 2004, pp. 261–268.

[24] A. Farinelli, A. Rogers, A. Petcu, and N. Jennings, “Decentralized coor-
dination of low-power embedded devices using the max-sum algorithm,”
in Proc. 7th Int. Joint Conf. Auton. Agents Multiagent Syst., Richland,
SC, USA, 2008, pp. 639–646.

[25] T. Penya-Alba, M. Vinyals, J. Cerquides, and J. A. Rodriguez-Aguilar,
“A scalable message passing algorithm for supply chain formation,” in
Proc. 26th Conf. Artif. Intell., Toronto, ON, Canada, 2012.

[26] T. Penya-Alba, J. Cerquides, J. A. Rodriguez-Aguilar, and M. Vinyals,
“CHAINME: Fast decentralized finding of better supply chains,” in Proc.
Int. Joint Conf. Auton. Agents Multiagent Syst., Richland, SC, USA,
2013, pp. 1317–1318.

[27] M. Winsper and M. Chli, “Using the max-sum algorithm for supply
chain formation in dynamic multi-unit environments,” in Proc. 11th
Int. Joint Conf. Auton. Agents Multiagent Syst., Valencia, Spain, 2012,
pp. 1285–1286.

[28] E. W. Dijkstra and C. S. Scholten, “Termination detection for diffusing
computations,” Inf. Process. Lett., vol. 11, no. 1, pp. 1–4, 1980.

[29] M. Sharma, S. Iyengar, and N. Mandyam, “An efficient distributed depth-
first-search algorithm,” Inf. Process. Lett., vol. 32, no. 4, pp. 183–186,
1989.

[30] W.-C. Yeh and M. El Khadiri, “A new universal generating function
method for solving the single (d, τ )-quick-path problem in multistate
flow networks,” IEEE Trans. Syst., Man, Cybern. A, Syst., Humans,
vol. 42, no. 6, pp. 1476–1484, Nov. 2012.

Maria Chli received the M.Eng. and the Ph.D.
degrees in computing from Imperial College
London, London, U.K., in 2001 and 2005, respec-
tively.

She is currently a Senior Lecturer with
the Department of Computer Science, School
of Engineering and Applied Sciences, Aston
University, Birmingham, U.K. Her current research
interests include multiagent systems and modeling
of complex systems using agent-based methodolo-
gies, to help in understanding the dynamics and in

analyzing the emergent properties, and ultimately to aid in decision-making
and policy formation, multiagent systems to design and evaluate mechanisms
that make real-life complex systems more efficient.

Michael Winsper received the B.Sc. and Ph.D.
degrees in computing from Aston University,
Birmingham, U.K., in 2008 and 2012, respectively.

He is currently a Postdoctoral Researcher with
the Supply Chain Improvement Group, University
of Derby, Derby, U.K. His current research interests
include multiagent systems, supply chain manage-
ment, social simulation, and sensor networks.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


