
Adapting Populations of Agents

Philippe De Wilde1, Maria Chli1, L. Correia2, R. Ribeiro2, P. Mariano2,
V. Abramov3, and J. Goossenaerts3

1 Intelligent and Interactive Systems Group, Department of Electrical and Electronic
Engineering, Imperial College London, London SW7 2BT, United Kingdom,

p.dewilde@ic.ac.uk,
WWW home page: http://www.ee.ic.ac.uk/philippe

2 Universidade Nova de Lisboa, 2825-115 Monte Caparica, Portugal
3 Eindhoven University of Technology, Eindhoven, The Netherlands

Abstract. We control a population of interacting software agents. The
agents have a strategy, and receive a payoff for executing that strategy.
Unsuccessful agents become extinct. We investigate the repercussions of
maintaining a diversity of agents. There is often no economic rationale
for this. If maintaining diversity is to be successful, i.e. without lowering
too much the payoff for the non-endangered strategies, it has to go on
forever, because the non-endangered strategies still get a good payoff, so
that they continue to thrive, and continue to endanger the endangered
strategies. This is not sustainable if the number of endangered ones is of
the same order as the number of non-endangered ones. We also discuss
niches, islands. Finally, we combine learning as adaptation of individual
agents with learning via selection in a population.

1 Populations Of Software Agents

In this paper we study a population of software agents [9] that interact with
each other. By drawing an analogy between the evolution of software agents
and evolution in nature, we are able to use replicator dynamics [14] as a model.
Replicator dynamics, first developed to understand the evolution of animal pop-
ulations, has recently been used in evolutionary game theory to analyze the
dynamical behaviour of agents playing a game. Agents playing a game are a
good model of software agents when the latter have to make decisions.

In replicator dynamics, the mechanism of reproduction is linked to the success
or utility of the agents in the interaction with other agents. We think that
this process also occurs among software agents. This paper adopts this premise,
and then goes on to investigate whether it pays off for a population to retain
some unsuccessful strategies as an “insurance policy” against changes in the
environment.

Each agent is uniquely determined by its code, just as a living organism
is determined by its genetic code. For agents, there is no distinction between
phenotype and genotype. Consider n different types of agents. At time t, there
are pi(t) agents with code i in the population. Just as an agent is determined by
i, a population is determined at time t by pi(t), i = 1, . . . , n.

The frequency of agent i in the population is

xi(t) =
pi(t)∑n
i=1 pi(t)

. (1)

Abbreviate
∑n

i=1 pi(t) = p, where p is the total population. Denote the state of
the population of agents by x(t) = (x1(t), . . . , xn(t)).

Now make the following basic assumptions using terminology widely adapted
in evolutionary game theory [14].

Assumption 1 (Game)
If agents of type i interact with a population in state x, all agents of type i
together receive a payoff u(ei,x).

Assumption 2 (Replicator Dynamics)
The rate of change of the number of agents of type i is proportional to the number
of agents of type i and the total payoff they receive:

ṗi(t) = pi(t)u(ei,x(t)). (2)

The proportionality constant in (2) can be absorbed in u. These assumptions
are discussed in the rest of this section.

In assumption 1, the code i of an agent is identified with a pure strategy ei

in a game. The notation should not distract the reader, i could have been used
instead of ei. Identification of a code with a strategy is familiar from evolutionary
genetics [12]. During replication of individuals in a population, information is
transmitted via DNA. It is straightforward to identify the code of an agent with
DNA.

Assumption 1, introducing a payoff to software agents, is part of the mod-
elling of software agents as economic agents. Economic principles have been used
before in distributed problem solving [8], but in [6] the author has made a start
with the analysis of general software agents as economic agents. This paper is
part of that project.

The replicator dynamics (2) describe asexual reproduction. Agents do some-
times result out of the combination of code from “parent” agents, but such
innovative combinations do not occur very often. On a timescale of one year,
the replication of agents will be far more important than the reproduction via
combination of parent programs.

In addition to DNA exchange, our species also passes information between
individuals via cultural inheritance. This tends to result in behaviour that is a
close copy to the behaviour of the “cultural” parent. If agents are to represent
humans in an evolving society, they will also exhibit cultural inheritance or social
learning, which follows assumption 2 [7].

In biological systems, one can distinguish long term macroevolution [13], and
shorter term microevolution [12]. Assumption 2 can be situated in the field of mi-
croevolution. On an even shorter timescale, psychologists observe reinforcement
learning. Although the results of reinforcement learning are not passed on to

offspring (central dogma of neo-Darwinism), it is possible to cast this learning
as replicator dynamics [2]. This adds to the credibility of assumption 2, because
software agents will often use reinforcement learning together with replication
of code [5].

Biological organisms as well as software agents live in an environment. This is
actually the same environment, because software agents act for humans, who live
in the biological environment. In the model (2), the change of the environment
will be reflected in the change of the payoff function u(ei,x), which has to be
written u(ei,x(t), t) to make the time dependence explicit. It is very important
to be able to model this change in environment, because a successful strategy or
agent type should be as robust as possible against changes in environment.

Another type of evolution that software agents have in common with bio-
logical agents is mutation. Strategies should be evolutionary stable if they are
to survive mutations [12]. However, mutations can positively contribute to the
evolution of a system. Current models tend to concentrate on stochastically per-
turbing the choice of strategies used [7, 3], rather than the random creation of
new strategies. Much work still needs to be done in this area.

2 The Burden Of Maintaining Diversity

Agents are pieces of software that act on behalf of humans. Software has a
lifetime, so have agents, and humans in a population. The human lifetime is not
necessarily the biological lifetime, it may be the time that a human operates in
a certain environment. Unsuccessful strategies will die out. This is an essential
part of the model (2). Recently there has been much interest in biodiversity [11]
and sustainable development [10]. As in all population dynamics, one can ask the
question whether it is worth artificially maintaining strategies (or agent types)
with a low payoff. The research on biodiversity suggests that this is worthwhile
indeed.

An agent type is a number i ∈ K = {1, . . . , n}. The set Ke of endangered
agent types is defined by Ke = {i ∈ K|u(ei,x) < a}, they have a payoff lower
than a. The set Ke will change in time, but the threshold a is fixed.

To indicate that the payoffs have been changed, we will use q instead of p for
the population, and y instead of x for the frequencies. Assume now that a is the
minimum payoff required to sustain a viable population. It is now possible to
redistribute the payoff between the non-endangered strategies outside Ke, and
the endangered ones in Ke in the following way

u(ei,x) = a, i ∈ Ke,

u(ei,x) = u(ei,x)−
∑

j∈Ke
[a− u(ej ,x)]

q − |Ke| , i 6∈ Ke. (3)

This transformation conserves the total payoff
∑

i∈K

u(ei,x).

Abbreviate

b =

∑
j∈Ke

[a− u(ej ,x)]
q − |Ke| (4)

To derive the differential equations in the state variables yi, start from (1),

q(t)yi(t) = qi(t), (5)

take the time derivative of left and right hand side to obtain

qẏi = q̇i − q̇yi. (6)

Using (3), we obtain, for i ∈ Ke,

qẏi = qia−
∑

j∈K

q̇jyi,

= qia−
∑

j∈Ke

qjayi −
∑

j 6∈Ke

qj [u(ej ,y)− b]yi, (7)

or

ẏi = yi

a−

∑

j∈Ke

yja−
∑

j 6∈Ke

yj [u(ej ,y)− b]

 . (8)

Similarly, for i 6∈ Ke, we find

ẏi = yi{u(ei,y)− b−
∑

j∈Ke

yja

−
∑

j 6∈Ke

yj [u(ej ,y)− b]}. (9)

We can now simplify this using

−
∑

j∈Ke

yja +
∑

j 6∈Ke

yjb

= −|Ke|
q

a +
q − |Ke|

q

∑
l∈Ke

[a− u(el,x)]
q − |Ke| ,

= −1
q

∑

l∈Ke

u(el,y). (10)

This quantity will be much smaller than both a and u(ei,y), i 6∈ Ke, the
payoff of the non-endangered strategies, if u(ei,y) ¿ a, i ∈ Ke, or if |Ke| ¿ q.
These plausible assumptions mean, in words, that the conservation value, a, of
the payoff is much larger than the payoff of the endangered strategies, or that
there are only a small number of endangered strategies. We will give practical
examples in the next section.

Hence we can write the population dynamics with conservation of endangered
strategies as

ẏi = yi[a−
∑

j 6∈Ke

yju(ej ,y)], i ∈ Ke,

ẏi = yi[u(ei,y)− b−
∑

j 6∈Ke

yju(ej ,y)], i 6∈ Ke. (11)

Compare this to the population dynamics without conservation [14],

ẋi = xi[u(ei,x)−
∑

j∈K

xju(ej ,x)], i ∈ K. (12)

The term subtracted from the payoff for strategy i is the population average
payoff

u(x,x) =
∑

j∈K

xju(ej ,x). (13)

These effects of artificially increasing the utility for endangered species are illus-
trated in figures 1 and 2.

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

x
1

x
2

smallest sustainable population

Fig. 1. The evolution of the proportion of two population types, x1 and x2, for payoffs
u(e1,x) = 5x2 and u(e2,x) = 0.5. This is a situation where the first type depends
on the second type to survive. Both types survive, but x2 is low and can become
accidentally extinct.

3 Niches and Islands

Comparing equations (11) and (12) can teach us a lot about the cost and im-
plications of conservation. In the natural world, endangered strategies tend to

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

y
1

y
2

smallest sustainable population

Fig. 2. The evolution of the proportion of two population types, y1 and y2, as in
figure 1, but the payoffs have now been adjusted according to (3), with Ke = {2}, and
a = 0.8. This implies u(e1,y) = 5y2 − 0.3 and u(e2,y) = 0.8. The proportion of type 2
is now higher, and not in danger of extinction. The price to pay is that the proportion
of type 1 is now lower.

become extinct, unless a niche can be found for them. A niche is an area in state
space where there is little or no competition. We will say that here is a niche in
the system if the equations (13) are uncoupled. In that case, the payoff does not
depend on the whole state x anymore, but on a projection of x on a subspace
of the state space.

The existence of a niche prevents strategies from going extinct because it
imposes a particular structure on the payoff function u. For a fixed u, there is no
particular advantage or disadvantage in the existence of a niche, the replicator
dynamics go their way, and that is all. However, the environment can change,
and this will induce a change in u, the function modeling the payoff or success
of strategies. Certain feedback loops in the dynamics can now become active.

Assume a system with two strategies that each operate in their niche

ẋ1 = x1[u(e1, x1, z)− x1u(e1, x1, z)
−x2u(e2, x2, z)],

ẋ2 = x2[u(e2, x2, z)− x1u(e1, x1, z)
−x2u(e2, x2, z)]. (14)

Strategy 1 does not have to compete with strategy 2 because u(e1, x1, z) is
independent of x2. Similarly, Strategy 2 does not have to compete with strategy
1 because u(e2, x2, z) is independent of x1. The frequencies x1, x2 of the strategies
remain non-zero. The frequencies of the other strategies x3, . . . , xn are grouped
in the partial state vector z. If the function u changes, the dynamics of the

frequencies of strategies 1 and 2 will now in general be

ẋ1 = x1[u(e1, x1, x2, z)− x1u(e1, x1, x2, z)
−x2u(e2, x1, x2, z)],

ẋ2 = x2[u(e2, x1, x2, z)− x1u(e1, x1, x2, z)
−x2u(e2, x1, x2, z)]. (15)

It is now possible that there is a positive feedback that causes x1 and x2 to
increase over time. This positive feedback is not guaranteed, but if one of the
strategies had become extinct, then the positive feedback could never have oc-
curred at all when u changed.

Remark that such a positive feedback was already possible in (14), because
both equations are coupled via the partial state vector z. We are not concerned
with this process here. More complex mechanisms of the benefits of altruism
have been studied in [1].

So far the pedestrian justification of conservation: once a strategy is extinct,
you cannot benefit from it anymore in the future, if the environment changes.
In mathematical terms, once the state space is reduced, many trajectories are
excluded, and some could benefit your strategy if the environment changes.

Since Darwin’s time, it is known that local optima in a population distribu-
tion x can exist on islands. And recently, we have seen how ending the isolation of
islands can destroy the local optimum by the invasion of more successful species.
Should we isolate information systems and software agents, so that new types
can develop? In that case the replicator dynamics (12) will be altered again. For
the evolution on an island, it appears that all species not present on the island
are extinct. Call Kr the set of strategies represented on the island. Then the
population dynamics is

ẋi = xi[u(ei, r)− u(r, r)], i ∈ Kr, (16)

where r is the state vector with zeroes for the strategies not in Kr. When the
isolation is ended, these zeroes become non-zero, and we obtain the dynamics

ẋi = xi[u(ei,x)− u(x,x)], i ∈ Kr (17)

for the strategies on the island. This is illustrated in figure 3. The dynamics (16)
and (17) are just the general formulations for the two-strategy niche dynamics
described by equations (14) and (15).

4 Learning By Individual Agents

The dynamics of software agents differs in another aspect from that of biological
systems. Learned behaviour can be passed on to offspring. Agents can be dupli-
cated, retaining all that was learned, e.g. via a neural network [5]. The replicator
dynamic has to take learning into account. If learning is successful, the payoff for
states encountered earlier will increase. If the learning also has a generalization

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

x
1

x
2

Fig. 3. The evolution of the proportion of two population types, x1 and x2, with payoffs
u(e1,x) = x1x2 and u(e2,x) = 0.1. At t = 5, the populations become separated, and
the positive feedback maintaining type 1 disappears.

capacity, as happens for neural networks [4], then the payoff for states similar
to those encountered earlier will also increase. The payoff now changes explicitly
with time, and (12) becomes

ẋi = xi[u(ei,x, t)− u(x,x, t)], i ∈ K. (18)

If all the payoffs u were simply multiplied by the same number during learning,
the dynamics (18) would be equivalent to (12) in that the orbits remain the
same, but they are traversed at a different speed (faster for a constant larger
than one). When the payoffs are multiplied by a time-varying factor,

ẋi = xiα(t)[u(ei,x, t)− u(x,x, t)], i ∈ K, (19)

the factor α(t) can be absorbed in the time derivative, and the orbits are tra-
versed with a speed varying in time. When the learning factor now described
as αi(t) becomes dependent on the strategy i however, the orbits are changed,
and we cannot compare the population evolution with and without learning any
more. A non-trivial learning algorithm for a population of 2 different types is
illustrated in figure 4.

5 A Population Of Traders

We present here a simulation of a population of traders, under realistic assump-
tions. We investigate what happens when the payoff (price) is perturbed.

5.1 Scenario

There is an array of N different resources in this model. There are M traders
each one with its capital, its discounting percentage and its available resources.

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

x
1

x
2

Fig. 4. The evolution of the proportion of two population types, x1 and x2. Initially
type 1 looses out, x1 goes down. However, type 1 adapts its utility in time as u(e1,x) =
t2x1/3, and this allows it to win over type 2, that uses no learning, u(e2,x) = x2.

All traders are endowed with the same amount of wealth, the amount of each
resource given to each trader is randomly calculated. A discounting percentage
is used when the trader recalculates its prices. Its function is explained in more
detail in the paragraph “Pricing of the Resources” below. Finally, the scenario
involves tasks that are generated by agents. A task requires some resources and
produces some others, loosely modelling generic economic activity.

At each clock tick every trader with its turn issues a task and advertises it
to the other traders. Each task carries a random combination of required and
produced resources. Every trader gives an offer for the task (provided that they
possess the required resources). If the issuer cannot pay for any offer then the
task is not executed. Otherwise, it selects the cheapest offer, and the task is
executed. The required resources are subtracted from the task executor’s set
of resources, the produced resources are added to the issuer’s set of resources
and the issuer pays to the executor an amount of money equal to the price for
executing the task.

The prices each trader sets for each resource are different. After the execution
of a task all the traders that gave offers for the task recalculate their prices. Only
the prices of the resources required for the task are altered on recalculation.
There are three ways in which recalculation occurs:

1. The trader whose offer was accepted increases the prices of the required
resources of the task as follows:
resourcePrices[i] +=
this.resourcePrices[i] * discountingFactor;

2. The traders whose offers were not accepted decrease the prices of the required
resources of the task as follows:
resourcePrices[i] -=

(1 - selectedPrice/myPrice) *
this.resourcePrices[i] * discountingFactor;

3. In case no offer was accepted all traders that gave offers for the task decrease
the prices of the required resources of the task as follows:
resourcePrices[i] -=
(1 - maxPricePayable/myPrice) *
discountingFactor * this.resourcePrices[i];

When a trader is sufficiently rich, i.e. its wealth exceeds a certain thresh-
old, it generates a new trader to which it gives half its wealth and half of its
resources. The new trader inherits its generator’s discounting factor. When a
trader’s wealth goes below zero it is destroyed.

One could say that the system described above is stable when the prices do
not rise or fall unexpectedly, or when they do not fluctuate outside some set
limits. Also, we would perceive the system as being stable when the traders’
number does not increase or decrease too much. Similarly having zero traders,
or all prices set to zero are situations where the system is stable. However, we
are not interested in these trivial cases, and we would prefer to avoid them.

5.2 Experiments

Having in mind the criteria of stability listed above, we now devise metrics of
stability for the model. It is of interest to measure the proportion of traders
that execute tasks during a time tick. It is also useful to know the prices of the
resources in the course of time.

The graphs shown below are for an experiment with 500 traders, 10 different
types of resources. The simulation was left running for 10 000 time ticks. Each
trader is endowed with EURO 100 000 and a random amount of each of the 10
resources. The amount from each resource it gets is of the order of 1000 (calcu-
lated randomly). The prices of resources are initially of the order of EURO 100
(calculated randomly). A trader can generate a new trader if its wealth exceeds
EURO 150 000 and it is destroyed if its wealth goes below EURO 0. We only
show the first 1000 ticks of the simulation in figure 5 as the rest are more or
less similar. We can observe that the number of traders stabilizes after some
time. Also the tasks each trader has executed is more or less stable, fluctuating
around 0.20 of a task per trader during the course of one time tick. The prices
of the resources seem to fluctuate evenly close to EURO 100. The few spikes we
observe in this graph are due to traders who have a relatively big discounting
factor and increase their prices.

We now try to inject a shock into the system. At time tick 350, the prices
of all the resources of each trader are multiplied arbitrarily by 1000. We then
allow the simulation to run until time tick 10 000 and see what happens. Again
the graphs shown are up to tick 1000. The following graph, figure 6 is a ‘zoom
in’ on the region of time when the shock is injected. We see the prices of five
resources rising momentarily at t=350. Then they go into a transient recovery
phase slowly converging to a stable state, with prices slightly higher than before.

a.

Number of Traders

0

100

200

300

400

500

600

700

800

1 5
4

1
0
7

1
6
0

2
1
3

2
6
6

3
1
9

3
7
2

4
2
5

4
7
8

5
3
1

5
8
4

6
3
7

6
9
0

7
4
3

7
9
6

8
4
9

9
0
2

9
5
5

1
0
0
8

Time Tick

b.

Tasks per Trader

0

0.2

0.4

0.6

0.8

1

1.2

1 5
4

1
0
7

1
6
0

2
1
3

2
6
6

3
1
9

3
7
2

4
2
5

4
7
8

5
3
1

5
8
4

6
3
7

6
9
0

7
4
3

7
9
6

8
4
9

9
0
2

9
5
5

1
0
0
8

Time Tick

c.

Prices of Resources R0-R4

0

1000

2000

3000

4000

5000

6000

7000

1

5
5

1
0
9

1
6
3

2
1
7

2
7
1

3
2
5

3
7
9

4
3
3

4
8
7

5
4
1

5
9
5

6
4
9

7
0
3

7
5
7

8
1
1

8
6
5

9
1
9

9
7
3

1
0
2
7

Time Tick

R0

R1

R2

R3

R4

Fig. 5. Simulation Statistics: a.Number of Traders,b.Tasks per Trader,c.Prices of Re-
sources R0-R4

Prices of Resources R0-R4

0

1000

2000

3000

4000

5000

6000

30
0

30
6

31
2

31
8

32
4

33
0

33
6

34
2

34
8

35
4

36
0

36
6

37
2

37
8

38
4

39
0

39
6

Time Tick

R0

R1

R2

R3

R4

Fig. 6. Prices of Resources R0-R4 (before and after the ‘shock’)

In another experiment we carried out, figures 7 and 8, a different shock was
injected into the system. This time, at time tick 350 the number of traders was
decreased by 30%. The system was left to run and here we show what happened
up to tick 2000 as the rest is more or less similar.

Number of Traders

0

100

200

300

400

500

600

700

800

1

1
0
2

2
0
3

3
0
4

4
0
5

5
0
6

6
0
7

7
0
8

8
0
9

9
1
0

1
0
1

1

1
1
1

2

1
2
1

3

1
3
1

4

1
4
1

5

1
5
1

6

1
6
1

7

1
7
1

8

1
8
1

9

1
9
2

0

Time Tick

Fig. 7. Number of Traders (before and after the ‘shock’)

6 Conclusions

All living things contain a code. So do computer programs, languages, designs
and artwork. The code consists of all the information that makes replication
possible. In a competitive environment, programs are pitched against each other,

Tasks per Trader

0

0.2

0.4

0.6

0.8

1

1.2

1

9
0

1
7

9

2
6

8

3
5

7

4
4

6

5
3

5

6
2

4

7
1

3

8
0

2

8
9

1

9
8

0

1
0

6
9

1
1

5
8

1
2

4
7

1
3

3
6

1
4

2
5

1
5

1
4

1
6

0
3

1
6

9
2

1
7

8
1

1
8

7
0

1
9

5
9

Time Tick

Fig. 8. Tasks per Trader (before and after the ‘shock’)

in a way similar to individuals in an ecosystem. The interaction brings a payoff
u to the program, or language, or design.

The population dynamics with conservation (11) is crucially dependent on
the conservation subsidy a per strategy, and on b, which depends on q, the
total population, and |Ke|, the number of endangered strategies. Conservation
maintains a greater pool of strategies than the ecosystem without conservation
(12). This makes it possible that the fitness of any single non-endangered strategy
could increase when the environment changes adversely for that strategy, via the
mutual-benefit feedback loop with an endangered strategy. The price to pay for
this is an overall decrease of the payoff values of the non-endangered strategies.

In the animal and plant kingdoms, the number of endangered species seems
much smaller that the number of non-endangered ones [11], although there is
great uncertainty on the numerical data. In this situation, equations (11)-(13)
seem to indicate that it is possible to conserve the endangered species, if the
effort is spread over all other species. However, replicator dynamics are not such
good models of sexual reproduction and mutation, so that it is difficult to reach
conclusions.

In the case of languages, artificial and computer, and information systems,
the number of endangered types is of the same order as the number of non-
endangered ones. In this case, (11)-(15) show that a conservation effort will
decrease the payoff of the non-endangered types so much, and their dynamics
affected to such an extent, that they also could become extinct if the environment
changes.

If conservation is successful, i.e. without lowering too much the payoff for
the non-endangered types, it has to go on forever, because the non-endangered
types still get a good payoff, so that they continue to thrive, and continue to
endanger the endangered types. This is not sustainable if the number of endan-
gered ones is of the same order as the number of non-endangered ones. In other
words, one should not try to control the pure Darwinian evolution in a popula-
tion of competing agents by artificially maintaining a diversity of agents. If the

number of endangered species is much smaller than the others, they will have
little influence on the dynamics of the system, and whether the others sustain
them or not will make little difference again.

We have illustrated the evolution of a population of agents using trading
agents. We have also shown how robust this population was against perturbations
of the payoff.

In short, we have proposed replicator dynamics as a model for the evolution
of populations of software agents. We have shown what happens if the utility of
some types in increased (conservation), if some types of agents do not interact
with each other (niches and islands), and if some types of agents change their
utility in time (individual learning). In each of these three cases the adaptation
of the population is artificially modified. It is up to the systems analyst to decide
which situation applies is a practical case. Our replicator dynamics then allow
us to predict what will happen to the different types of agents.

7 Acknowledgements

Partly funded by European Community, under the Future and Emerging Tech-
nologies arm of the IST Programme, FET-UIE scheme, Ecology and Evolution
of Interacting Infohabitants, IST-1999-10304.

References

1. Gary S. Becker. Altruism, egoism, and genetic fitness: Economics and sociobiol-
ogy. In The Economic Approach to Human Behavior, pages 282–294. University
of Chicago Press, Chicago, 1976.

2. T. Borgers and R. Sarin. Learning through reinforcement and replicator dynamics.
Journal of Economic Theory, 77:1–14, 1997.

3. Andrea Cavagna, Juan P. Garrahan, Irene Giardina, and David Sherrington. Ther-
mal model for adaptive competition in a market. Physical Review Letters, 83:4429–
4432, 1999.

4. Philippe De Wilde. Neural Network Models, second expanded edition. Springer
Verlag, London, 1997.

5. Philippe De Wilde. How soft games can be played. In H.-J. Zimmermann, editor,
EUFIT ’99, 7th European Congress on Intelligent Techniques & Soft Computing,
pages FSD–6–12698, Aachen, September 1999. Verlag Mainz.

6. Philippe De Wilde, Hyacinth S. Nwana, and Lyndon C. Lee. Stability, fairness
and scalability of multi-agent systems. International Journal of Knowledge-Based
Intelligent Engineering Systems, 3(2):84–91, 1999.

7. Drew Fudenberg and David K. Levine. The Theory of Learning in Games. MIT
Press, Cambridge, Massachusetts, 1998.

8. B. A. Huberman, editor. The Ecology of Computation. North-Holland, Amsterdam,
1988.

9. Nicholas J. Jennings. On agent-based software engineering. Artificial Intelligence,
117:277–296, 2000.

10. John Pezzey. Economic analysis of sustainable growth and sustainable development.
World Bank, Washington DC, 1989.

11. Andy Purvis and Andy Hector. Getting the measure of biodiversity. Nature,
405:212–219, 20.

12. John Maynard Smith. Evolutionary Genetics. Oxford University Press, Oxford,
1998.

13. S. M. Stanley. Macroevolution. W. H. Freeman, San Fransisco, 1979.
14. Jörgen W. Weibull. Evolutionary Game Theory. MIT Press, Cambridge, Mas-

sachusetts, 1995.

