
Using the Max-Sum Algorithm for Supply Chain Formation
in Dynamic Multi-Unit Environments

(Extended Abstract)

Michael Winsper and Maria Chli
Aston University
Aston Triangle

Birmingham, United Kingdom B4 7ET
{winsperm, m.chli}@aston.ac.uk

ABSTRACT
The max-sum loopy belief propagation (LBP) algorithm was
shown in [4] to produce strong results in a simple decen-
tralised supply chain formation (SCF) scenario where goods
are traded in single units. In this paper, we demonstrate the
performance of LBP in a multi-unit SCF scenario with ad-
ditional constraints. We also provide experimental analysis
of LBP’s performance in dynamic scenarios where the prop-
erties and composition of participants are altered while the
algorithm is running. Our results suggest that LBP contin-
ues to produce strong solutions in multi-unit scenarios, and
that performance remains solid in a dynamic setting.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
systems

General Terms
Economics, Algorithms, Experimentation

Keywords
Supply Chain Formation, Loopy Belief Propagation

1. INTRODUCTION
Computational approaches to SCF model potential supply
chain participants as individual computational agents which
express their capabilities and costs through a mechanism
which determines the subset of agents capable of forming
the most efficient supply chain. Although centralised SCF
techniques [1] have allowed for multi-unit exchanges for some
time, the existing state of the art in decentralised [4, 3] SCF
only model simple scenarios where goods are exchanged in
single units. Additionally, [4] does not model the effect of
changes to the properties or composition of participants once
the process has begun. In this paper, we propose a frame-
work for the representation of multi-unit supply chains and
extend the LBP-based technique for decentralised SCF pre-
sented in [4] to the multi-unit case. We also present a set of
experiments analysing the performance of LBP in a dynamic
environment, where changes to the properties and compo-
sition of participants occur while the algorithm is running.

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Our results demonstrate that LBP is capable of producing
efficient allocations over a range of network topologies in
both static and dynamic environments.

2. MODEL
The use of task dependency networks (TDNs) for the rep-
resentation of supply chains was originally proposed in [3].
For the first time, we extend this TDN representation to the
multi-unit case by modelling input to output good ratios,
production capacities and consumer desired good quanti-
ties. An example of the extended representation is shown in
Figure 1. Values below producers and consumers represent
reserve prices and production capacities, and consumption
values and desired consumable good quantities. Edges from
goods to producers are labelled with the producer’s input to
output ratio for that good. A producer with a single input
and an input ratio of 2 for that good requires two units of
that good in order to produce one unit of its output.

Figure 1: The Simple supply chain TDN from [3] extended to
the multi-unit case. Producers (P[x]) and a consumer (C1)
are represented by rectangles, while goods are represented
by circles. Edges indicate potential flows of goods.

Producers and Consumers At initialisation, each pro-
ducer is assigned a production capacity which specifies the
maximum number of units each producer is able to produce
of its output good, and an input to output ratio for each of
their inputs. In order to produce one unit of their output
good, producers are required to acquire a number of units
of each of their input goods equal to their ratio for that
good. A producer cannot produce its output good unless it
acquires the necessary quantities of all of its input goods.
Producers attach a reserve price Rp to their output good,
which is linear with the number of units of its output good
that it produces. Consumers seek to acquire a number of
units of their consumable good no greater than their desired
consumable good quantity. In each network, each consumer
is assigned a static consumption value Vc representing the



valuation the consumer holds for obtaining a single unit of
its consumable good. The total value a consumer receives is
linear with the number of goods it obtains.

3. APPLYING THE MAX-SUM ALGORITHM
The max-sum algorithm is a variant of loopy belief propa-
gation (LBP), a decentralised and distributed approximate
inference scheme involving applying Pearl’s belief propaga-
tion algorithm [2] to graphs containing cycles. It uses iter-
ative stages of message passing as a means for estimating
the maximum a posteriori assignment; in our case, this cor-
responds to the network-wide state configuration that max-
imises Eq. 3. Each state encodes a combination of purchases
and sales which may be made by an agent. States are associ-
ated with costs - the unary cost, representing the cost to the
allocation of the agent being in that state, and the pairwise
cost, which encodes the compatibility of two states of neigh-
bouring agents. At each iteration of the algorithm, every
node in the graph sends a message to each of its neighbours,
representing the sender’s beliefs about the potential cost to
the total efficiency of the network of each of the recipient’s
states. This is calculated using Eq. 1, where xv is a state of
recipient j, beli(xu) is sender i’s belief in its own state xu,
mj→i(xu) is the message passed from j to i in the previous
step about i’s state xu, and gij(xu, xv) is the pairwise cost
of states xu and xv. Once values have been calculated for
all of j’s states, i passes the message to j.

mi→j(xv) = minxu

(

beli(xu)−mj→i(xu)+gij(xu, xv)
)

(1)

Once all nodes have sent a message to each of their neigh-
bours, nodes then update their beliefs about their own states
based upon the content of the messages they received using
Eq. 2, where fi(xu) is the unary cost of i’s state xu, and
mj→i(xu) are the messages received from i’s set of neigh-
bours Nu about state xu in the previous step. The pro-
cess of message passing and belief update continues until
the beliefs of each node stabilise. For more information on
applying LBP to SCF, we refer the reader to [4].

beli(xu) = fi(xu) +
∑

j∈Nu

mj→i(xu) (2)

Allocation Before allocation is performed, each agent de-
termines their final state - the state, when beliefs stabilise,
which the agent believes holds the lowest cost. Once the
final states of each of the agents have been determined, we
classify producers which successfully sell their output good
and consumers which acquire their consumable good as ac-
tive. We calculate allocation values using Eq. 3, where C

is the set of active consumers C, Ac is the number of goods
acquired by consumer c, P is the set of active producers and
Mp is the number of goods manufactured by producer p.

V al =
∑

c∈C

VcAc −
∑

p∈P

RpMp (3)

4. RESULTS
We perform two sets of experiments, examining the perfor-
mance of LBP in both static and dynamic environments. In
the static environment, we compare LBP with a multi-unit
implementation of the SAMP-SB auction protocol from [3],
extended by using multiple copies of each agent to represent
capacities and desired good quantities. This representation
does not allow for the use of input to output good ratios, so

for fair comparison we also test LBP with all ratios set to
1, referred to as ratioless LBP. We test each technique over
100 runs on each of the networks from [3]. We vary input
ratios (drawn from [1 . . . 2]), consumer desired goods (from
[2 . . . 3]), reserve prices (from U(0, 1)), and production ca-
pacities ([4 . . . 5]) between each run, discarding runs in which
the optimal allocation value, determined using mixed integer
programming, is non-positive. Consumption values are fixed
at the per-network values given in [3] over every run. In the
dynamic environment, at a number (drawn from [6 . . . 10]) of
randomly chosen steps during each run we randomly change
one of the aforementioned properties of a single agent, in-
troduce a new producer or consumer, or remove a producer.
We present our results in terms of average efficiency, cal-
culated by dividing the total allocation values produced by
each method over 100 runs on each network by the maximum
available value over the same 100 runs.

Table 1: Average efficiency in each network produced by
LBP and the SAMP-SB auction protocol from [3] on the
networks from [3]. A result of 1.000 equates to the capture
of 100% of available efficiency.

Static Static Dynamic Static
LBP LBP LBP SAMP-SB

Network ratioless with ratios with ratios ratioless
Simple 1.000 1.000 0.911 0.999

Unbalanced 0.962 0.872 0.713 0.964
Two-Cons 0.986 0.983 0.801 0.963
Bigger 0.969 0.813 0.520 0.995

Many-Cons 1.000 1.000 0.989 0.425
Greedy-Bad 0.91 0.839 0.793 0.666

Table 1 shows the average efficiency produced by each method.
We see that both static LBP-based methods are able to
match or outperform SAMP-SB on the majority of networks.
As expected, LBP finds the optimal allocation 100% of the
time in static scenarios on acyclic networks, while still being
able to produce highly efficient allocations on more loopy
networks. We also see that LBP tended to perform better
when input to output good ratios are not present; this is to
be expected since the presence of ratios serves to constrain
the number of solutions available. In the dynamic setting,
we see that for most networks, average efficiency is roughly
comparable to the results produced in a static environment.

5. REFERENCES
[1] J. Cerquides, U. Endriss, A. Giovannucci, and

J. Rodŕıguez-Aguilar. Bidding Languages and Winner
Determination for Mixed Multi-Unit Combinatorial
Auctions. In Proceedings of the 20th International Joint
Conference on Artificial Intelligence, pages 469–476,
2007.

[2] J. Pearl. Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible Inference, volume 1. Morgan
Kaufmann, 1st edition, 1988.

[3] W. Walsh and M. Wellman. Decentralized Supply
Chain Formation: A Market Protocol and Competitive
Equilibrium Analysis. Journal of Artificial Intelligence
Research, 19:513–567, 2003.

[4] M. Winsper and M. Chli. Decentralized Supply Chain
Formation using Max-Sum Loopy Belief Propagation.
Computational Intelligence, In Press, 2012.


